cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A327738 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*j^2)).

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 37, 76, 158, 326, 672, 1386, 2862, 5906, 12187, 25148, 51900, 107103, 221023, 456110, 941256, 1942423, 4008481, 8272094, 17070712, 35227975, 72698206, 150023632, 309596255, 638898274, 1318462339, 2720844607, 5614870612, 11587126980
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Invert transform of A046951.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*
          nops(select(issqr, numtheory[divisors](i))), i=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 23 2019
  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Length[Select[Divisors[k], IntegerQ[Sqrt[#]] &]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^(k^2))).
G.f.: 1 / (1 - Sum_{k>=1} (theta_3(x^k) - 1) / 2), where theta_() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A046951(k) * a(n-k).

A343776 G.f.: Product_{k>=1} eta(x^(k^2)).

Original entry on oeis.org

1, -1, -1, 0, -1, 2, 1, 1, -1, -1, 2, 0, -1, 0, -2, -3, -1, 2, 0, 1, 5, -2, 1, -2, 2, -1, 0, 2, 0, -1, -1, 3, -4, 4, 0, -4, -5, -2, -3, 7, 2, 1, -6, -2, 4, -2, 2, 1, 7, -5, 11, 6, 0, -1, 1, -12, -11, 5, -3, -2, -8, 9, 8, 3, 1, 2, -5, -4, 5, -11, -6, 0, 7, 7, 4, -17, 3, -5, 8, 9, -4, -1, -10, 5, -6, 24, -5, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2021

Keywords

Crossrefs

Convolution inverse of A004101.

Programs

  • PARI
    my(N=99, x='x+O('x^N)); Vec(prod(k=1, sqrt(N), eta(x^(k^2))))

A327747 Expansion of Product_{i>=1, j>=1} 1 / (1 + (-x)^(i*j^2)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 2, 2, 1, 1, 0, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 3, 4, 3, 4, 4, 1, 4, 3, 4, 7, 6, 7, 6, 4, 5, 5, 7, 9, 9, 9, 8, 7, 7, 7, 10, 14, 13, 12, 14, 10, 12, 16, 13, 20, 19, 20, 20, 16, 18, 20, 22, 26, 27, 27, 28, 23, 26, 25, 31, 38, 36, 40
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 + (-x)^k)^Length[Select[Divisors[k], IntegerQ[Sqrt[#]] &]], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[(-1)^k Sum[(-1)^(k/d) d Length[Select[Divisors[d], IntegerQ[Sqrt[#]] &]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 75}]

Formula

G.f.: Product_{k>=1} 1 / (1 + (-x)^k)^A046951(k).

A369763 Decimal expansion of the asymptotic mean of the ratio A000688(k)/A038538(k).

Original entry on oeis.org

9, 8, 7, 7, 1, 4, 8, 4, 0, 0, 4, 4, 9, 3, 7, 6, 3, 7, 7, 4, 0, 2, 3, 0, 6, 8, 6, 7, 0, 6, 3, 9, 3, 4, 9, 3, 5, 1, 9, 0, 1, 0, 7, 5, 6, 7, 0, 3, 9, 5, 6, 2, 7, 1, 4, 4, 9, 9, 3, 6, 6, 1, 2, 5, 1, 9, 0, 8, 1, 8, 5, 0, 7, 8, 1, 8, 2, 9, 8, 6, 5, 2, 6, 6, 0, 0, 7, 6, 4, 7, 5, 2, 3, 9, 4, 3, 1, 0, 4, 3, 6, 5, 9, 3, 6
Offset: 0

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Comments

The asymptotic mean of the ratio between the number of non-isomorphic abelian groups and the number of non-isomorphic semisimple rings of the same order.
The constant A in Kühleitner's paper (1995).
The ratio is 1 for all biquadratefree numbers (whose asymptotic density is A215267 = 0.923..., see A046100), and smaller than 1 otherwise.

Examples

			0.98771484004493763774023068670639349351901075670395...
		

Crossrefs

Programs

  • PARI
    default(realprecision, 120); my(N=512, x='x+O('x^N), v); v = Vec(1/prod(k=1, sqrtint(N)+1, prod(j=1, 1+N\k^2, 1-x^(j*k^2)))); prodeulerrat((1-1/p)*vecsum(vector(N, i, numbpart(i-1)/(v[i]*p^(i-1))))) \\ after Vaclav Kotesovec at A004101

Formula

Equals Product_{p prime} (1 - 1/p)*(1 + Sum_{k>=1} A000041(k)/(A004101(k)*p^k)).
Previous Showing 11-14 of 14 results.