A129586
Number of unlabeled connected bi-point-determining graphs (see A129583).
Original entry on oeis.org
1, 0, 0, 1, 5, 31, 293, 4986, 151096, 8264613, 812528493, 144251345591, 46649058611515, 27744159658789435, 30603223477819571330, 63039669933956074333128, 243839768084859914114367906, 1779006737976575676931317142360, 24571827603944282248499044846893618
Offset: 1
Ji Li (vieplivee(AT)hotmail.com), May 07 2007
- Martin Rubey, Table of n, a(n) for n = 1..29
- Florian Fürnsinn, Moritz Gangl, and Martin Rubey, Unexpectedly, a symmetry on unlabeled graphs, arXiv:2505.03665 [math.CO], 2025. See p. 18.
- Ira M. Gessel and Ji Li, Enumeration of point-determining Graphs, Journal of Combinatorial Theory, Series A 118 (2011) 591-612.
A232699
Number of labeled point-determining bipartite graphs on n vertices.
Original entry on oeis.org
1, 1, 1, 3, 15, 135, 1875, 38745, 1168545, 50017905, 3029330745, 257116925835, 30546104308335, 5065906139629335, 1172940061645387035, 379092680506164049425, 171204492289446788997825, 108139946568584292606269025, 95671942593719946611454522225
Offset: 0
Consider n = 3. The triangle graph is point-determining, but it is not bipartite, so it is not counted in a(3). The graph 1--2--3 is bipartite, but it is not point-determining (the vertices on the two ends have the same neighborhood), so it is also not counted in a(3). The only graph counted in a(3) is the graph *--* * (with three possible labelings). - _Justin M. Troyka_, Nov 27 2013
- Andrew Howroyd, Table of n, a(n) for n = 0..100 (terms 0..20 from Justin M. Troyka)
- Ira Gessel and Ji Li, Enumeration of point-determining graphs, arXiv:0705.0042 [math.CO], 2007-2009.
- Andy Hardt, Pete McNeely, Tung Phan, and Justin M. Troyka, Combinatorial species and graph enumeration, arXiv:1312.0542 [math.CO], 2013.
Cf.
A006024,
A004110 (labeled and unlabeled point-determining graphs).
Cf.
A092430,
A004108 (labeled and unlabeled connected point-determining graphs).
Cf.
A218090 (unlabeled point-determining bipartite graphs).
Cf.
A232700,
A088974 (labeled and unlabeled connected point-determining bipartite graphs).
-
terms = 20;
CoefficientList[Sqrt[Sum[((1+x)^2^k Log[1+x]^k)/k!, {k, 0, terms}]] + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)
-
seq(n)={my(A=log(1+x+O(x*x^n))); Vec(serlaplace(sqrt(sum(k=0, n, exp(2^k*A)*A^k/k!))))} \\ Andrew Howroyd, Sep 09 2018
A232700
Number of labeled connected point-determining bipartite graphs on n vertices.
Original entry on oeis.org
1, 1, 0, 12, 60, 1320, 26880, 898800, 40446000, 2568736800, 225962684640, 27627178692960, 4686229692144000, 1104514965434200320, 361988888631722352000, 165271302775469812521600, 105278651889065640047462400, 93750696652129931568573619200
Offset: 1
Consider n = 4. There are 12 connected point-determining bipartite graphs on 4 vertices: the graph *--*--*--*, with 12 possible labelings. - _Justin M. Troyka_, Nov 27 2013
- Andrew Howroyd, Table of n, a(n) for n = 1..100 (terms 1..20 from Justin M. Troyka)
- Ira Gessel and Ji Li, Enumeration of point-determining graphs, arXiv:0705.0042 [math.CO], 2007-2009.
- Andy Hardt, Pete McNeely, Tung Phan, and Justin M. Troyka, Combinatorial species and graph enumeration, arXiv:1312.0542 [math.CO], 2013.
Cf.
A006024,
A004110 (labeled and unlabeled point-determining graphs).
Cf.
A092430,
A004108 (labeled and unlabeled connected point-determining graphs).
Cf.
A232699,
A218090 (labeled and unlabeled point-determining bipartite graphs).
Cf.
A088974 (unlabeled connected point-determining bipartite graphs).
-
terms = 18;
G[x_] = Sqrt[Sum[((1 + x)^2^k*Log[1 + x]^k)/k!, {k, 0, terms+1}]] + O[x]^(terms+1);
A[x_] = x + Log[1 + (G[x] - x - 1)/(1 + x)];
(CoefficientList[A[x], x]*Range[0, terms]!) // Rest (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)
-
seq(n)={my(A=log(1+x+O(x*x^n))); my(p=sqrt(sum(k=0, n, exp(2^k*A)*A^k/k!))); Vec(serlaplace(x + log(1+(p-x-1)/(1+x))))} \\ Andrew Howroyd, Sep 09 2018
A088974
Number of (nonisomorphic) connected bipartite graphs with minimum degree at least 2 and with n vertices.
Original entry on oeis.org
0, 0, 0, 1, 1, 5, 9, 45, 160, 1018, 6956, 67704, 830392, 13539344, 288643968, 8112651795, 300974046019, 14796399706863, 967194378235406, 84374194347669628, 9856131011755992817, 1546820212559671605395
Offset: 1
Felix Goldberg (felixg(AT)tx.technion.ac.il), Oct 30 2003
Consider n = 4. There is one connected bipartite graph with minimum degree at least 2: the square graph. Also there is one connected point-determining bipartite graph: the graph *--*--*--*. - _Justin M. Troyka_, Nov 27 2013
Cf.
A006024,
A004110 (labeled and unlabeled point-determining graphs [the latter is also unlabeled graphs w/ min. degree >= 2]).
Cf.
A059167 (labeled graphs w/ min. degree >= 2).
Cf.
A092430,
A004108 (labeled and unlabeled connected point-determining graphs [the latter is also unlabeled connected graphs w/ min. degree >= 2]).
Cf.
A059166 (labeled connected graphs w/ min. degree >= 2).
Cf.
A232699,
A218090 (labeled and unlabeled point-determining bipartite graphs).
Cf.
A232700 (labeled connected point-determining bipartite graphs).
A101388
Number of n-vertex unlabeled digraphs without endpoints.
Original entry on oeis.org
1, 1, 1, 8, 137, 7704, 1413982, 855543836, 1775124241697, 12985137979651848, 340909258684048264585, 32512676857544231506934756, 11365672344040389664750137465767, 14668676509227095069116619104786898732, 70315084528883620836175544247562749711989951
Offset: 0
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
seq(n)=Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^3 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2)) \\ Andrew Howroyd, Jan 22 2021
a(0)=1 prepended and terms a(7) and beyond from
Andrew Howroyd, Jan 22 2021
A218090
Number of unlabeled point-determining bipartite graphs on n vertices.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 8, 17, 63, 224, 1248, 8218, 75992, 906635, 14447433, 303100595, 8415834690, 309390830222, 15105805368214, 982300491033887
Offset: 0
Consider n = 3. The triangle graph is point-determining, but it is not bipartite, so it is not counted in a(3). The graph *--*--* is bipartite, but it is not point-determining (the vertices on the two ends have the same neighborhood), so it is also not counted in a(3). The only graph counted in a(3) is the graph *--* *. - _Justin M. Troyka_, Nov 27 2013
Cf.
A006024,
A004110 (labeled and unlabeled point-determining graphs).
Cf.
A092430,
A004108 (labeled and unlabeled connected point-determining graphs).
Cf.
A232699 (labeled point-determining bipartite graphs).
Cf.
A232700,
A088974 (labeled and unlabeled connected point-determining bipartite graphs).
A101389
Number of n-vertex unlabeled oriented graphs without endpoints.
Original entry on oeis.org
1, 1, 1, 3, 21, 369, 16929, 1913682, 546626268, 406959998851, 808598348346150, 4358157210587930509, 64443771774627635711718, 2636248889492487709302815665, 300297332862557660078111708007894, 95764277032243987785712142452776403618, 85885545190811866954428990373255822969983915
Offset: 0
a(3) = 3 because there are 2 distinct orientations of the triangle K_3 plus the empty graph on 3 vertices.
-
\\ See links in A339645 for combinatorial species functions.
oedges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
ographsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 3^oedges(p) * sMonomial(p)); s/n!}
ographs(n)={sum(k=0, n, ographsCycleIndex(k)*x^k) + O(x*x^n)}
trees(n,k)={sRevert(x*sv(1)/sExp(k*x*sv(1) + O(x^n)))}
cycleIndexSeries(n)={my(g=ographs(n), tr=trees(n,2), tu=tr-tr^2); sSolve( g/sExp(tu), tr )*symGroupSeries(n)}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 27 2020
-
\\ faster stand-alone version
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
seq(n)={Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 3^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^2 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2))} \\ Andrew Howroyd, Jan 22 2021
a(0)=1 prepended and terms a(9) and beyond from
Andrew Howroyd, Dec 27 2020
A304222
Triangle T(n,k) read by rows: number of simple connected graphs with n nodes and k endpoints, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 3, 1, 1, 1, 0, 11, 5, 3, 1, 1, 0, 61, 29, 14, 5, 2, 1, 0, 507, 224, 86, 25, 8, 2, 1, 0, 7442, 2666, 762, 184, 48, 11, 3, 1, 0, 197772, 50779, 10173, 1890, 374, 72, 16, 3, 1, 0, 9808209, 1653431, 220627, 29252, 4252, 660, 115, 20, 4, 1, 0
Offset: 0
The triangle starts in row n=0 with column 0 <= k <= n as:
1;
1, 0;
0, 0, 1;
1, 0, 1, 0;
3, 1, 1, 1, 0;
11, 5, 3, 1, 1, 0;
61, 29, 14, 5, 2, 1, 0;
507, 224, 86, 25, 8, 2, 1, 0;
7442, 2666, 762, 184, 48, 11, 3, 1, 0;
197772, 50779, 10173, 1890, 374, 72, 16, 3, 1, 0;
-
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i) )}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)}
T(n)={my(v=InvEulerMT(Vec(G(n)-1))); v[2]=y^2; concat([[1]], vector(#v, n, Vecrev(v[n], n+1))) }
my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 22 2021
A349402
Number of distance-critical graphs on n vertices.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 4, 15, 168, 2252, 94504
Offset: 1
The unique distance-critical graphs on 5 and 6 vertices are the cycles.
A241904
The number of graphs G on n vertices such that every unlabeled automorphism of the reduced graph of G is a labeled automorphism of the reduced graph of G.
Original entry on oeis.org
1, 2, 3, 8, 22, 110
Offset: 1
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford University Press (1999).
Comments