cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A324693 Number of simple graphs on n unlabeled nodes with minimum degree exactly 1.

Original entry on oeis.org

0, 1, 1, 4, 12, 60, 378, 3843, 64455, 1921532, 104098702, 10348794144, 1893781768084, 639954768875644, 400905675004630820, 467554784370658979194, 1019317687720204607541914, 4170177760438554428852944352, 32130458453030025927403299167172
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2019

Keywords

Crossrefs

Column k = 1 of A294217.
A diagonal of A263293.
The labeled version is A327227.
The generalization to set-systems is A327335, with covering case A327230.
Unlabeled covering graphs are A002494.

Formula

a(n) = A002494(n) - A261919(n).
First differences of A141580. - Andrew Howroyd, Jan 11 2021

A369290 Number of unlabeled simple graphs without endpoints with n edges.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 6, 10, 25, 68, 182, 538, 1748, 5935, 21585, 82904, 334037, 1406934, 6167455, 28033776, 131770437, 638956188, 3189940453, 16369201031, 86214798929, 465480395911, 2573390342437, 14553415319929, 84118459655982, 496514424803358, 2990633679878654
Offset: 0

Views

Author

Andrew Howroyd, Jan 30 2024

Keywords

Crossrefs

Row sums of A369932.
Cf. A004110 (n vertices), A307316 (multigraph), A342556 (connected).

Programs

  • PARI
    \\ See also A369932 for a more efficient program.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    seq(n)={my(s=0); forpart(p=2*n, s+=permcount(p)*prod(i=1, #p, 1-x^p[i])*edges(p, w->1+x^w + O(x*x^n))); Vec(s/(2*n)!)}

Formula

Euler transform of A342556.

A088974 Number of (nonisomorphic) connected bipartite graphs with minimum degree at least 2 and with n vertices.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 9, 45, 160, 1018, 6956, 67704, 830392, 13539344, 288643968, 8112651795, 300974046019, 14796399706863, 967194378235406, 84374194347669628, 9856131011755992817, 1546820212559671605395
Offset: 1

Views

Author

Felix Goldberg (felixg(AT)tx.technion.ac.il), Oct 30 2003

Keywords

Comments

The terms were computed using the program Nauty.
As shown in the Hardt et al. reference, this sequence (for n >= 3) also enumerates the connected point-determining bipartite graphs. - Justin M. Troyka, Nov 27 2013

Examples

			Consider n = 4.  There is one connected bipartite graph with minimum degree at least 2: the square graph.  Also there is one connected point-determining bipartite graph: the graph *--*--*--*. - _Justin M. Troyka_, Nov 27 2013
		

Crossrefs

Cf. A006024, A004110 (labeled and unlabeled point-determining graphs [the latter is also unlabeled graphs w/ min. degree >= 2]).
Cf. A059167 (labeled graphs w/ min. degree >= 2).
Cf. A092430, A004108 (labeled and unlabeled connected point-determining graphs [the latter is also unlabeled connected graphs w/ min. degree >= 2]).
Cf. A059166 (labeled connected graphs w/ min. degree >= 2).
Cf. A232699, A218090 (labeled and unlabeled point-determining bipartite graphs).
Cf. A232700 (labeled connected point-determining bipartite graphs).

Extensions

More terms from Andy Hardt, Oct 31 2012

A101388 Number of n-vertex unlabeled digraphs without endpoints.

Original entry on oeis.org

1, 1, 1, 8, 137, 7704, 1413982, 855543836, 1775124241697, 12985137979651848, 340909258684048264585, 32512676857544231506934756, 11365672344040389664750137465767, 14668676509227095069116619104786898732, 70315084528883620836175544247562749711989951
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 14 2005

Keywords

Crossrefs

Cf. A100548 (labeled case), A004110, A004108, A059166, A059167, A101389.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
    seq(n)=Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^3 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2)) \\ Andrew Howroyd, Jan 22 2021

Extensions

a(0)=1 prepended and terms a(7) and beyond from Andrew Howroyd, Jan 22 2021

A218090 Number of unlabeled point-determining bipartite graphs on n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 8, 17, 63, 224, 1248, 8218, 75992, 906635, 14447433, 303100595, 8415834690, 309390830222, 15105805368214, 982300491033887
Offset: 0

Views

Author

Andy Hardt, Oct 20 2012

Keywords

Comments

A graph is point-determining if no two vertices have the same set of neighbors. This kind of graph is also called a mating graph.

Examples

			Consider n = 3. The triangle graph is point-determining, but it is not bipartite, so it is not counted in a(3). The graph *--*--* is bipartite, but it is not point-determining (the vertices on the two ends have the same neighborhood), so it is also not counted in a(3). The only graph counted in a(3) is the graph *--*  *. - _Justin M. Troyka_, Nov 27 2013
		

Crossrefs

Cf. A006024, A004110 (labeled and unlabeled point-determining graphs).
Cf. A092430, A004108 (labeled and unlabeled connected point-determining graphs).
Cf. A232699 (labeled point-determining bipartite graphs).
Cf. A232700, A088974 (labeled and unlabeled connected point-determining bipartite graphs).

A101389 Number of n-vertex unlabeled oriented graphs without endpoints.

Original entry on oeis.org

1, 1, 1, 3, 21, 369, 16929, 1913682, 546626268, 406959998851, 808598348346150, 4358157210587930509, 64443771774627635711718, 2636248889492487709302815665, 300297332862557660078111708007894, 95764277032243987785712142452776403618, 85885545190811866954428990373255822969983915
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jan 14 2005

Keywords

Examples

			a(3) = 3 because there are 2 distinct orientations of the triangle K_3 plus the empty graph on 3 vertices.
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    oedges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
    ographsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 3^oedges(p) * sMonomial(p)); s/n!}
    ographs(n)={sum(k=0, n, ographsCycleIndex(k)*x^k) + O(x*x^n)}
    trees(n,k)={sRevert(x*sv(1)/sExp(k*x*sv(1) + O(x^n)))}
    cycleIndexSeries(n)={my(g=ographs(n), tr=trees(n,2), tu=tr-tr^2); sSolve( g/sExp(tu), tr )*symGroupSeries(n)}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 27 2020
    
  • PARI
    \\ faster stand-alone version
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
    seq(n)={Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 3^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^2 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2))} \\ Andrew Howroyd, Jan 22 2021

Extensions

a(0)=1 prepended and terms a(9) and beyond from Andrew Howroyd, Dec 27 2020

A368987 Triangle read by rows: T(n,k) is the number of unlabeled point-determining graphs with n nodes and k edges, n >= 0, 0 <= k <= n*(n - 1)/2.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 1, 3, 3, 4, 2, 1, 0, 1, 0, 0, 0, 1, 3, 6, 11, 14, 13, 12, 9, 5, 2, 1, 0, 1, 0, 0, 0, 1, 1, 5, 15, 31, 50, 77, 89, 94, 83, 61, 37, 24, 11, 5, 2, 1, 0, 1, 0, 0, 0, 0, 1, 3, 11, 35, 89, 197, 371, 603, 861, 1068, 1154, 1098, 926, 679, 445, 257, 134, 65, 30, 11, 5, 2, 1, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 15 2024

Keywords

Comments

Point-determining graphs are also called mating graphs.

Examples

			Triangle begins:
[0] 1;
[1] 1;
[2] 0, 1;
[3] 0, 1, 0, 1;
[4] 0, 0, 1, 2, 1, 0,  1;
[5] 0, 0, 1, 1, 3, 3,  4,  2,  1,  0,  1;
[6] 0, 0, 0, 1, 3, 6, 11, 14, 13, 12,  9,  5,  2,  1,  0,  1;
[7] 0, 0, 0, 1, 1, 5, 15, 31, 50, 77, 89, 94, 83, 61, 37, 24, 11, 5, 2, 1, 0, 1;
		

Crossrefs

Row sums are A004110.
Cf. A123551 (same row sums), A369283 (labeled).

A241904 The number of graphs G on n vertices such that every unlabeled automorphism of the reduced graph of G is a labeled automorphism of the reduced graph of G.

Original entry on oeis.org

1, 2, 3, 8, 22, 110
Offset: 1

Views

Author

Dayana Adatorwovor, May 01 2014

Keywords

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford University Press (1999).

Crossrefs

Cf. A004110, A004108, A241905 (similar but with connected graphs).

A241905 The number of connected graphs G on n vertices such that every unlabeled automorphism of the reduced graph of G is a labeled automorphism of the reduced graph of G.

Original entry on oeis.org

1, 1, 1, 4, 13, 83
Offset: 1

Views

Author

Dayana Adatorwovor, May 01 2014

Keywords

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford University Press (1999).

Crossrefs

Cf. A004110, A004108, A241904 (similar but graphs not necessarily connected).

A369284 Number of point-determining graphs on n unlabeled nodes with no isolated vertices.

Original entry on oeis.org

1, 0, 1, 1, 4, 12, 66, 522, 7525, 198389, 9816493, 903092383, 153733197077, 48444061519659, 28363852590188969, 30996574583203962119, 63502062798039684795935, 244852576446682783722245053, 1783161675023082411226026322655, 24603891461799405333437840036319801
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2024

Keywords

Comments

Point-determining graphs are also called mating graphs. See A004110 for references.
The inverse Euler transform of this sequence gives A004108 except with a(1) = 0 and a(2) = 1.

Crossrefs

Cf. A004108, A004110 (point-determining graphs).

Formula

a(n) = A004110(n) - a(n-1) for n > 0.
G.f.: B(x)/(1 + x) where B(x) is the g.f. of A004110.
Previous Showing 21-30 of 32 results. Next