cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A002985 Number of trees in an n-node wheel.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 20, 36, 64, 108, 179, 292, 464, 727, 1124, 1714, 2585, 3866, 5724, 8418, 12290, 17830, 25713, 36898, 52664, 74837, 105873, 149178, 209364, 292793, 407990, 566668, 784521, 1082848, 1490197, 2045093, 2798895, 3820629, 5202085
Offset: 1

Views

Author

Keywords

Comments

This is the number of nonequivalent spanning trees of the n-wheel graph up to isomorphism of the trees.

Examples

			All trees that span a wheel on 5 nodes are equivalent to one of the following:
      o         o         o
      |         | \     /   \
   o--o--o   o--o  o   o--o  o
      |         |           /
      o         o         o
		

References

  • F. Harary, P. E. O'Neil, R. C. Read and A. J. Schwenk, The number of trees in a wheel, in D. J. A. Welsh and D. R. Woodall, editors, Combinatorics. Institute of Mathematics and Its Applications. Southend-on-Sea, England, 1972, pp. 155-163.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    terms = 40;
    A003293[n_] := SeriesCoefficient[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, terms}], {x, 0, n}];
    A008804[n_] := SeriesCoefficient[1/((1-x)^4 (1+x)^2 (1+x^2)), {x, 0, n}];
    a[n_] := A003293[n-1] - A008804[n-3];
    Array[a, terms] (* Jean-François Alcover, Sep 02 2019 *)
  • PARI
    \\ here b(n) is A003293 and d(n) is A008804.
    b(n)={polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n)}
    d(n)={(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2+2*n^3)/96}
    a(n)=b(n-1)-d(n-3); \\ Andrew Howroyd, Oct 09 2017

Formula

a(n) = A003293(n-1) - A008804(n-3). - Andrew Howroyd, Oct 09 2017

Extensions

Terms a(32) and beyond from Andrew Howroyd, Oct 09 2017

A122679 Invariant number of internal vertices of n-circum-C_5 H_5 systems.

Original entry on oeis.org

0, 5, 25, 80, 225, 605, 1600, 4205, 11025, 28880, 75625, 198005, 518400, 1357205, 3553225, 9302480, 24354225, 63760205, 166926400, 437019005, 1144130625, 2995372880, 7841988025, 20530591205, 53749785600, 140718765605, 368406511225, 964500768080
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2006

Keywords

Programs

  • Mathematica
    LinearRecurrence[{4,-4,1},{0,5,25},40] (* Harvey P. Dale, Apr 21 2015 *)
  • PARI
    concat(0, Vec(-5*x^2*(1+x)/((x-1)*(x^2-3*x+1)) + O(x^40))) \\ Colin Barker, Nov 03 2016

Formula

a(n) = 15*Fibonacci(2*k-1)-5*Fibonacci(2*k)-10 = 5*A004146(n-1).
G.f.: -5*x^2*(1+x) / ( (x-1)*(x^2-3*x+1) ). - R. J. Mathar, Nov 23 2014
a(1)=0, a(2)=5, a(3)=25, a(n) = 4*a(n-1)-4*a(n-2)+a(n-3). - Harvey P. Dale, Apr 21 2015
a(n) = -5*2^(-1-n)*(2^(2+n)-(3-sqrt(5))^n*(3+sqrt(5))+(-3+sqrt(5))*(3+sqrt(5))^n). - Colin Barker, Nov 03 2016

Extensions

More terms from Harvey P. Dale, Apr 21 2015

A364754 Smallest nonnegative integer not expressible by the addition and subtraction of fewer than n Lucas numbers.

Original entry on oeis.org

0, 1, 5, 23, 99, 421, 1785, 7563, 32039, 135721, 574925, 2435423, 10316619, 43701901, 185124225, 784198803, 3321919439, 14071876561, 59609425685, 252509579303, 1069647742899, 4531100550901, 19194049946505, 81307300336923, 344423251294199, 1459000305513721, 6180424473349085
Offset: 0

Views

Author

Mike Speciner, Oct 20 2023

Keywords

Examples

			a(0) = 0, since 0 is expressible as the sum of 0 Lucas numbers.
a(1) = 1, since 1 is a Lucas number.
a(2) = 5, since 2, 3, and 4 are all Lucas numbers; while 5=1+4, the sum of 2 Lucas numbers.
a(3) = 23, since integers less than 23 are expressible with 2 or fewer Lucas numbers, while 23 = 1+4+18 requires 3 terms.
		

Crossrefs

Cf. A000032, A004146 (adding positive Lucas numbers), A365907 (adding any Lucas numbers).
Cf. A001076 (with Fibonacci numbers).

Programs

  • Mathematica
    a[n_] := (LucasL[3*n - 1] - 1)/2; a[0] = 0; Array[a, 27, 0] (* Amiram Eldar, Oct 21 2023 *)
  • Python
    from sympy import lucas
    a = lambda n: n and (lucas(3*n-1)-1)//2

Formula

a(0) = 0.
a(n) = (A000032(3*n-1)-1)/2, for n > 0.
a(n) = 1 + Sum_{i=1..n-1} A000032(3*i), for n > 0.
G.f.: x*(1 + x^2)/((1 - x)*(1 - 4*x - x^2)). - Stefano Spezia, Oct 21 2023

A111091 Successive generations of a Kolakoski(3,1) rule starting with 1 (see A066983).

Original entry on oeis.org

1, 3, 111, 313, 1113111, 313111313, 11131113131113111, 3131113131113111313111313, 1113111313111311131311131311131113131113111
Offset: 1

Views

Author

Benoit Cloitre, Oct 12 2005

Keywords

Comments

Terms are palindromic. If b_3(n) denotes the number of 3's in a(n) then b(n) satisfies the recursion: b_3(1)=0, b_3(2)=1 and b_3(n) = b_3(n-1) + b_3(n-2) + (-1)^n so that b_3(2n)=A055588(n) and b_3(2n+1)=A027941(n). If b_1(n) denotes the number of 1's: b_1(1)=1, b_1(2)=0 and b_1(n) = b_1(n-1) + b_1(n-2) - 2*(-1)^n so that b_1(2n)=A004146(n) and b_1(2n+1) = A000032(n-2) - 2.

Examples

			1 --> 3 --> 111 --> 313 --> 1113111 --> 313111313
		

Crossrefs

Cf. A111081.

Formula

As n grows, a(2n-1) converges toward A095345 (read as a word) and a(2n) converges toward A095346.

A206723 a(n) = 7*( ((3 + sqrt(5))/2)^n + ((3 - sqrt(5))/2)^n - 2 ).

Original entry on oeis.org

7, 35, 112, 315, 847, 2240, 5887, 15435, 40432, 105875, 277207, 725760, 1900087, 4974515, 13023472, 34095915, 89264287, 233696960, 611826607, 1601782875, 4193522032, 10978783235, 28742827687, 75249699840, 197006271847, 515769115715, 1350301075312, 3535134110235, 9255101255407, 24230169656000, 63435407712607, 166076053481835, 434792752732912
Offset: 1

Views

Author

N. J. A. Sloane, Feb 11 2012

Keywords

Crossrefs

Equals 7*A004146 for n >= 1.

Programs

Formula

G.f.: -7*x*(1+x) / ( (x-1)*(x^2-3*x+1) ). - R. J. Mathar, Nov 15 2013

A328986 The sequence C(n) defined in the comments (A and B smallest missing numbers, offset 1).

Original entry on oeis.org

4, 10, 16, 21, 28, 33, 39, 45, 51, 57, 62, 68, 74, 80, 86, 91, 98, 103, 109, 115, 120, 127, 132, 138, 144, 150, 156, 161, 168, 173, 179, 185, 190, 197, 202, 208, 214, 220, 226, 231, 237, 243, 249, 255, 260, 267, 272, 278, 284, 290, 296, 301, 307, 313, 319
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2019

Keywords

Comments

Define a triple of sequences A,B,C by A[1]=1, B[1]=2, C[1]=4; for n>=2, A[n] = smallest missing number from the terms of A,B,C defined so far; B[n] = = smallest missing number from the terms of A,B,C defined so far; C[n] = n+A[n]+B[n].
Then A = A286660, B = A080652, C = the present sequence.
Inspired by the triples [A003144, A003145, A004146] and [A298468, A298469, A047218].

Examples

			The initial terms are:
n: 1, 2, 3, 4,  5,  6,  7,  8.  9. 10. 11, 12, ...
A: 1, 3, 6, 8, 11, 13, 15, 18, 20, 23, 25, 27, ...
B: 2, 5, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, ...
C: 4, 10, 16, 21, 28, 33, 39, 45, 51, 57, 62, 68, ...
		

Crossrefs

Previous Showing 31-36 of 36 results.