A002985
Number of trees in an n-node wheel.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 11, 20, 36, 64, 108, 179, 292, 464, 727, 1124, 1714, 2585, 3866, 5724, 8418, 12290, 17830, 25713, 36898, 52664, 74837, 105873, 149178, 209364, 292793, 407990, 566668, 784521, 1082848, 1490197, 2045093, 2798895, 3820629, 5202085
Offset: 1
All trees that span a wheel on 5 nodes are equivalent to one of the following:
o o o
| | \ / \
o--o--o o--o o o--o o
| | /
o o o
- F. Harary, P. E. O'Neil, R. C. Read and A. J. Schwenk, The number of trees in a wheel, in D. J. A. Welsh and D. R. Woodall, editors, Combinatorics. Institute of Mathematics and Its Applications. Southend-on-Sea, England, 1972, pp. 155-163.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
terms = 40;
A003293[n_] := SeriesCoefficient[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, terms}], {x, 0, n}];
A008804[n_] := SeriesCoefficient[1/((1-x)^4 (1+x)^2 (1+x^2)), {x, 0, n}];
a[n_] := A003293[n-1] - A008804[n-3];
Array[a, terms] (* Jean-François Alcover, Sep 02 2019 *)
-
\\ here b(n) is A003293 and d(n) is A008804.
b(n)={polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n)}
d(n)={(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2+2*n^3)/96}
a(n)=b(n-1)-d(n-3); \\ Andrew Howroyd, Oct 09 2017
A122679
Invariant number of internal vertices of n-circum-C_5 H_5 systems.
Original entry on oeis.org
0, 5, 25, 80, 225, 605, 1600, 4205, 11025, 28880, 75625, 198005, 518400, 1357205, 3553225, 9302480, 24354225, 63760205, 166926400, 437019005, 1144130625, 2995372880, 7841988025, 20530591205, 53749785600, 140718765605, 368406511225, 964500768080
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Azulenoids, MATCH, No. 34, 1996, 91-108.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
-
LinearRecurrence[{4,-4,1},{0,5,25},40] (* Harvey P. Dale, Apr 21 2015 *)
-
concat(0, Vec(-5*x^2*(1+x)/((x-1)*(x^2-3*x+1)) + O(x^40))) \\ Colin Barker, Nov 03 2016
A364754
Smallest nonnegative integer not expressible by the addition and subtraction of fewer than n Lucas numbers.
Original entry on oeis.org
0, 1, 5, 23, 99, 421, 1785, 7563, 32039, 135721, 574925, 2435423, 10316619, 43701901, 185124225, 784198803, 3321919439, 14071876561, 59609425685, 252509579303, 1069647742899, 4531100550901, 19194049946505, 81307300336923, 344423251294199, 1459000305513721, 6180424473349085
Offset: 0
a(0) = 0, since 0 is expressible as the sum of 0 Lucas numbers.
a(1) = 1, since 1 is a Lucas number.
a(2) = 5, since 2, 3, and 4 are all Lucas numbers; while 5=1+4, the sum of 2 Lucas numbers.
a(3) = 23, since integers less than 23 are expressible with 2 or fewer Lucas numbers, while 23 = 1+4+18 requires 3 terms.
Cf.
A001076 (with Fibonacci numbers).
-
a[n_] := (LucasL[3*n - 1] - 1)/2; a[0] = 0; Array[a, 27, 0] (* Amiram Eldar, Oct 21 2023 *)
-
from sympy import lucas
a = lambda n: n and (lucas(3*n-1)-1)//2
A111091
Successive generations of a Kolakoski(3,1) rule starting with 1 (see A066983).
Original entry on oeis.org
1, 3, 111, 313, 1113111, 313111313, 11131113131113111, 3131113131113111313111313, 1113111313111311131311131311131113131113111
Offset: 1
1 --> 3 --> 111 --> 313 --> 1113111 --> 313111313
A206723
a(n) = 7*( ((3 + sqrt(5))/2)^n + ((3 - sqrt(5))/2)^n - 2 ).
Original entry on oeis.org
7, 35, 112, 315, 847, 2240, 5887, 15435, 40432, 105875, 277207, 725760, 1900087, 4974515, 13023472, 34095915, 89264287, 233696960, 611826607, 1601782875, 4193522032, 10978783235, 28742827687, 75249699840, 197006271847, 515769115715, 1350301075312, 3535134110235, 9255101255407, 24230169656000, 63435407712607, 166076053481835, 434792752732912
Offset: 1
A328986
The sequence C(n) defined in the comments (A and B smallest missing numbers, offset 1).
Original entry on oeis.org
4, 10, 16, 21, 28, 33, 39, 45, 51, 57, 62, 68, 74, 80, 86, 91, 98, 103, 109, 115, 120, 127, 132, 138, 144, 150, 156, 161, 168, 173, 179, 185, 190, 197, 202, 208, 214, 220, 226, 231, 237, 243, 249, 255, 260, 267, 272, 278, 284, 290, 296, 301, 307, 313, 319
Offset: 1
The initial terms are:
n: 1, 2, 3, 4, 5, 6, 7, 8. 9. 10. 11, 12, ...
A: 1, 3, 6, 8, 11, 13, 15, 18, 20, 23, 25, 27, ...
B: 2, 5, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, ...
C: 4, 10, 16, 21, 28, 33, 39, 45, 51, 57, 62, 68, ...
Comments