cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A145391 Number of inequivalent sublattices of index n in centered rectangular lattice.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 5, 10, 8, 10, 7, 17, 8, 13, 14, 19, 10, 21, 11, 24, 18, 19, 13, 35, 17, 22, 22, 31, 16, 38, 17, 36, 26, 28, 26, 50, 20, 31, 30, 50, 22, 50, 23, 45, 42, 37, 25, 69, 30, 48, 38, 52, 28, 62, 38, 65, 42, 46, 31, 90, 32, 49, 55, 69, 44, 74, 35, 66, 50, 74
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

The centered rectangular lattice has symmetry group c2mm, or cmm. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145392 (p4), A145393 (p4mm), A145394 (p6), A003051 (p6mm). - Andrey Zabolotskiy, Mar 12 2018

Crossrefs

Programs

  • Mathematica
    a060594[n_] := Switch[Mod[n, 8], 2|6, 2^(PrimeNu[n] - 1), 1|3|4|5|7, 2^PrimeNu[n], 0, 2^(PrimeNu[n] + 1)];
    a145390[n_] := Sum[If[IntegerQ[Sqrt[d]], a060594[n/d], 0], {d, Divisors[n]} ];
    a[n_] := (DivisorSigma[1, n] + a145390[n])/2;
    Array[a, 100] (* Jean-François Alcover, Aug 31 2018 *)

Formula

a(n) = (A000203(n) + A145390(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A060594(n/m^2) + A157223(n/m^2) = A145390(n) + Sum_{ m: m^2|n } A157223(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A004525(d+1). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Mar 12 2018
New name from Andrey Zabolotskiy, Jan 19 2022

A214283 Smallest Euler characteristic of a downset on an n-dimensional cube.

Original entry on oeis.org

0, -1, -2, -3, -4, -10, -20, -35, -56, -126, -252, -462, -792, -1716, -3432, -6435, -11440, -24310, -48620, -92378, -167960, -352716, -705432, -1352078, -2496144, -5200300, -10400600, -20058300, -37442160, -77558760, -155117520, -300540195
Offset: 1

Views

Author

Terence Tao, Jul 09 2012

Keywords

Comments

An m-downset is a set of subsets of 1..m such that if S is in the set, so are all subsets of S. The Euler characteristic of a downset is the number of sets in the downset with an even cardinality, minus the number with an odd cardinality.

Crossrefs

Programs

Formula

a(n=2k) = -binomial(n-1,n/2) = -binomial(2k-1,k),
a(n=4k+3) = -binomial(n-1,(n-1)/2) = -binomial(4k+2,2k+1),
a(n=4k+1) = -binomial(n-1,(n+1)/2) = -binomial(4k,2k+1).
a(n) = A214282(n) - A001405(n). - Reinhard Zumkeller, Jul 14 2012
For n > 1: a(n) = - A007318(n-1, A004525(n)). - Reinhard Zumkeller, Jul 14 2012
a(n+1) = -A000108(n/2) * A212831(n). - Paul Curtz, Nov 04 2012

A091573 Poincaré series [or Poincare series] of the preprojective algebra of an extended Dynkin diagram of type E_6.

Original entry on oeis.org

7, 12, 17, 24, 31, 36, 41, 48, 55, 60, 65, 72, 79, 84, 89, 96, 103, 108, 113, 120, 127, 132, 137, 144, 151, 156, 161, 168, 175, 180, 185, 192, 199, 204, 209, 216, 223, 228, 233, 240, 247, 252, 257, 264, 271, 276, 281, 288, 295, 300, 305, 312, 319, 324, 329
Offset: 0

Views

Author

Paul Boddington, Jan 22 2004

Keywords

References

  • I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices of the AMS, Vol. 44, Number 5.

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ (7 - 2x + 7x^2) / (1 - 2x + 2x^2 - 2x^3 + x^4), {x, 0, 49}], x] (* Jean-François Alcover, Dec 02 2011 *)
  • PARI
    a(n) = (12+(-I)^n+I^n+12*n)/2 \\ Colin Barker, Oct 18 2015
    
  • PARI
    Vec((7-2*x+7*x^2)/((1+x^2)*(1-x)^2) + O(x^100)) \\ Colin Barker, Oct 18 2015
    
  • PARI
    a(n) = if(n%2 == 1, 6*n+6, if(n%4 == 0, 6*n+7, 6*n+5));
    vector(100, n, a(n-1)) \\ Altug Alkan, Oct 18 2015

Formula

a(n) = 6*n+6 (n odd), 6*n+7 (n==0 (mod 4)), 6*n+5 (n==2 (mod 4)).
G.f.: (7-2*x+7*x^2) / ((1+x^2)*(1-x)^2).
From Colin Barker, Oct 18 2015: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>3.
a(n) = (12+(-i)^n+i^n+12*n)/2 where i = sqrt(-1).
(End)

Extensions

G.f. corrected by Colin Barker, Oct 18 2015

A316675 Triangle read by rows: T(n,k) gives the number of ways to stack n triangles in a valley so that the right wall has k triangles for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 4, 3, 4, 3, 2, 1, 1, 1, 0, 0, 1, 1, 5, 4, 5, 4, 3, 2, 1, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 10 2018

Keywords

Examples

			T(8,4) = 3.
    *                             *
   / \                           / \
  *---*   *     *---*---*       *---*
   \ / \ / \     \ / \ / \     / \ / \
    *---*---*     *---*---*   *---*---*
     \ / \ /       \ / \ /     \ / \ /
      *---*         *---*       *---*
       \ /           \ /         \ /
        *             *           *
Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 1;
  0, 0, 1, 1, 1;
  0, 0, 1, 1, 1, 1;
  0, 0, 1, 1, 1, 1,  1;
  0, 0, 1, 1, 2, 1,  1,  1;
  0, 0, 1, 1, 3, 2,  1,  1,  1;
  0, 0, 1, 1, 3, 3,  2,  1,  1,  1;
  0, 0, 1, 1, 3, 3,  3,  2,  1,  1,  1;
  0, 0, 1, 1, 4, 3,  4,  3,  2,  1,  1, 1;
  0, 0, 1, 1, 5, 4,  5,  4,  3,  2,  1, 1, 1;
  0, 0, 1, 1, 5, 5,  6,  5,  4,  3,  2, 1, 1, 1;
  0, 0, 1, 1, 5, 5,  8,  6,  5,  4,  3, 2, 1, 1, 1;
  0, 0, 1, 1, 6, 5, 10,  8,  7,  5,  4, 3, 2, 1, 1, 1;
  0, 0, 1, 1, 7, 6, 11, 10, 10,  7,  5, 4, 3, 2, 1, 1, 1;
  0, 0, 1, 1, 7, 7, 13, 11, 12, 10,  7, 5, 4, 3, 2, 1, 1, 1;
  0, 0, 1, 1, 7, 7, 16, 13, 14, 12, 10, 7, 5, 4, 3, 2, 1, 1, 1;
  ...
		

Crossrefs

Row sums give A006950.
Sums of even columns give A059777.
Cf. A072233.

Formula

For m >= 0,
Sum_{n>=2m} T(n,2m) *x^n = x^(2m) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).
Sum_{n>=2m+1} T(n,2m+1)*x^n = x^(2m+1) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).

A316718 Expansion of Product_{k=1..6} (1+x^(2*k-1))/(1-x^(2*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 34, 41, 52, 65, 78, 93, 113, 137, 162, 189, 224, 266, 308, 355, 414, 480, 549, 626, 717, 820, 928, 1045, 1183, 1337, 1496, 1670, 1871, 2091, 2321, 2571, 2853, 3161, 3484, 3830, 4218, 4640, 5078, 5549, 6072, 6633, 7219
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2018

Keywords

Crossrefs

Product_{k=1..b} (1+x^(2*k-1))/(1-x^(2*k)): A000012 (b=1), A004525(n+1) (b=2), A000933(n+5) (b=3), A089597 (b=4), A014670 (b=5), this sequence (b=6), A316719 (b=7), A316720 (b=8), A316721 (b=9), A316722 (b=10).
Cf. A316675.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, 6, (1+x^(2*k-1))/(1-x^(2*k))))

A316719 Expansion of Product_{k=1..7} (1+x^(2*k-1))/(1-x^(2*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 54, 68, 83, 100, 122, 149, 179, 212, 253, 303, 357, 417, 490, 575, 668, 772, 893, 1033, 1187, 1356, 1551, 1773, 2015, 2281, 2583, 2922, 3291, 3695, 4147, 4650, 5197, 5791, 6450, 7179, 7966, 8818, 9757, 10785, 11893
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2018

Keywords

Crossrefs

Product_{k=1..b} (1+x^(2*k-1))/(1-x^(2*k)): A000012 (b=1), A004525(n+1) (b=2), A000933(n+5) (b=3), A089597 (b=4), A014670 (b=5), A316718 (b=6), this sequence (b=7), A316720 (b=8), A316721 (b=9), A316722 (b=10).
Cf. A316675.

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1 + x^(2 k - 1)) / (1 - x^(2 k)), {k, 1, 7}], {x, 0, nmax}], x] (* Vincenzo Librandi, Jul 12 2018 *)
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, 7, (1+x^(2*k-1))/(1-x^(2*k))))

A316720 Expansion of Product_{k=1..8} (1+x^(2*k-1))/(1-x^(2*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 55, 70, 85, 103, 127, 156, 188, 224, 270, 326, 386, 454, 539, 638, 746, 869, 1016, 1186, 1372, 1581, 1827, 2108, 2415, 2758, 3156, 3605, 4094, 4639, 5261, 5956, 6715, 7553, 8499, 9552, 10694, 11950, 13357, 14908, 16589
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2018

Keywords

Crossrefs

Product_{k=1..b} (1+x^(2*k-1))/(1-x^(2*k)): A000012 (b=1), A004525(n+1) (b=2), A000933(n+5) (b=3), A089597 (b=4), A014670 (b=5), A316718 (b=6), A316719 (b=7), this sequence (b=8), A316721 (b=9), A316722 (b=10).
Cf. A316675.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, 8, (1+x^(2*k-1))/(1-x^(2*k))))

A316721 Expansion of Product_{k=1..9} (1+x^(2*k-1))/(1-x^(2*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 55, 70, 86, 105, 129, 159, 193, 231, 279, 338, 403, 477, 568, 675, 795, 932, 1094, 1284, 1497, 1736, 2016, 2340, 2700, 3105, 3573, 4106, 4699, 5363, 6118, 6972, 7921, 8974, 10163, 11500, 12974, 14606, 16435, 18471
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2018

Keywords

Crossrefs

Product_{k=1..b} (1+x^(2*k-1))/(1-x^(2*k)): A000012 (b=1), A004525(n+1) (b=2), A000933(n+5) (b=3), A089597 (b=4), A014670 (b=5), A316718 (b=6), A316719 (b=7), A316720 (b=8), this sequence (b=9), A316722 (b=10).
Cf. A316675.

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1 + x^(2 k - 1)) / (1 - x^(2 k)), {k, 1, 9}], {x, 0, nmax}], x] (* Vincenzo Librandi, Jul 12 2018 *)
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, 9, (1+x^(2*k-1))/(1-x^(2*k))))

A316722 Expansion of Product_{k=1..10} (1+x^(2*k-1))/(1-x^(2*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 55, 70, 86, 105, 130, 161, 195, 234, 284, 345, 412, 489, 585, 698, 824, 969, 1143, 1347, 1575, 1834, 2141, 2496, 2891, 3339, 3862, 4460, 5125, 5876, 6740, 7720, 8810, 10031, 11423, 12993, 14730, 16669, 18862, 21315
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2018

Keywords

Crossrefs

Product_{k=1..b} (1+x^(2*k-1))/(1-x^(2*k)): A000012 (b=1), A004525(n+1) (b=2), A000933(n+5) (b=3), A089597 (b=4), A014670 (b=5), A316718 (b=6), A316719 (b=7), A316720 (b=8), A316721 (b=9), this sequence (b=10).
Cf. A316675.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, 10, (1+x^(2*k-1))/(1-x^(2*k))))

A134314 First differences of A134429.

Original entry on oeis.org

-8, 8, -8, 16, -24, 24, -24, 32, -40, 40, -40, 48, -56, 56, -56, 64, -72, 72, -72, 80, -88, 88, -88, 96, -104, 104, -104, 112, -120, 120, -120, 128, -136, 136, -136, 144, -152, 152, -152, 160, -168, 168, -168, 176, -184, 184, -184, 192, -200, 200, -200, 208
Offset: 0

Views

Author

Paul Curtz, Jan 30 2008

Keywords

Programs

Formula

From R. J. Mathar, Feb 07 2009: (Start)
a(n)= -2*a(n-1)-2*a(n-2)-2*a(n-3)-a(n-4) = -8*(-1)^n*A004525(n+1).
G.f.: -8*(1+x+x^2)/((1+x^2)*(1+x)^2). (End)

Extensions

Edited by N. J. A. Sloane, Mar 23 2008
More terms from R. J. Mathar, Feb 07 2009
Previous Showing 11-20 of 25 results. Next