A153583 Convolution triangle by rows, A004736 * (A153582 * 0^(n-k)).
1, 2, 1, 3, 2, 3, 4, 3, 6, 9, 5, 4, 9, 18, 24, 6, 5, 12, 27, 48, 65, 7, 6, 15, 36, 72, 130, 177, 8, 7, 18, 45, 96, 195, 354, 481, 9, 8, 21, 54, 120, 260, 531, 962, 1308, 10, 9, 24, 63, 144, 325, 708, 1443, 2616, 3555, 11, 10, 27, 72, 168, 390, 885, 1924, 3924, 7110, 9664
Offset: 0
Examples
First few rows of the triangle = 1; 2, 1; 3, 2, 3; 4, 3, 6, 9; 5, 4, 9, 18, 24; 6, 5, 12, 27, 48, 65; 7, 6, 15, 36, 72, 130, 177; 8, 7, 18, 45, 96, 195, 354, 481; 9, 8, 21, 54, 120, 260, 531, 962, 1308; 10, 9, 24, 63, 144, 325, 708, 1443, 2616, 3555; ... Row 3 = (4, 3, 6, 9) = termwise products of (4, 3, 2, 1) and (1, 1, 3, 9); where A153582 = (1, 1, 3, 9, 24, 65,...).
Links
- Steve Butler, R. L. Graham & Nan Zang, Jumping Sequences, Journal of Integer Sequences, Vol. 11, 2008, 08.4.5.
Programs
-
PARI
tabl(nn) = {my(va = vector(nn), vc = vector(nn)); va[1] = 1; for (n=1, nn, if (n > 1, va[n] = round(exp(1)*va[n-1])); vc[n] = va[n] - sum(k=1, n-1, vc[k]*(n-k+1)); print(vector(n, k, vc[k]*(n-k+1))););} \\ Michel Marcus, Jan 28 2019
Extensions
More terms from Michel Marcus, Jan 28 2019
Comments