cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A210209 GCD of all sums of n consecutive Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 4, 1, 3, 2, 11, 1, 8, 1, 29, 2, 21, 1, 76, 1, 55, 2, 199, 1, 144, 1, 521, 2, 377, 1, 1364, 1, 987, 2, 3571, 1, 2584, 1, 9349, 2, 6765, 1, 24476, 1, 17711, 2, 64079, 1, 46368, 1, 167761, 2, 121393, 1, 439204, 1, 317811, 2, 1149851, 1, 832040
Offset: 0

Views

Author

Alonso del Arte, Mar 18 2012

Keywords

Comments

Early on in the Posamentier & Lehmann (2007) book, the fact that the sum of any ten consecutive Fibonacci numbers is a multiple of 11 is presented as an interesting property of the Fibonacci numbers. Much later in the book a proof of this fact is given, using arithmetic modulo 11. An alternative proof could demonstrate that 11*F(n + 6) = Sum_{i=n..n+9} F(i).

Examples

			a(3) = 2 because all sums of three consecutive Fibonacci numbers are divisible by 2 (F(n) + F(n-1) + F(n-2) = 2F(n)), but since the GCD of 3 + 5 + 8 = 16 and 5 + 8 + 13 = 26 is 2, no number larger than 2 divides all sums of three consecutive Fibonacci numbers.
a(4) = 1 because the GCD of 1 + 1 + 2 + 3 = 7 and 1 + 2 + 3 + 5 = 11 is 1, so the sums of four consecutive Fibonacci numbers have no factors in common.
		

References

  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, New York (2007) p. 33.

Crossrefs

Cf. A000045, A000071, sum of the first n Fibonacci numbers, A001175 (Pisano periods). Cf. also A229339.
Bisections give: A005013 (even part), A131534 (odd part).
Sums of m consecutive Fibonacci numbers: A055389 (m = 3, ignoring the initial 1); A000032 (m = 4, these are the Lucas numbers); A013655 (m = 5); A022087 (m = 6); A022096 (m = 7); A022379 (m = 8).

Programs

  • Maple
    a:= n-> (Matrix(7, (i, j)-> `if`(i=j-1, 1, `if`(i=7, [1, 0, -3, -1, 1, 3, 0][j], 0)))^iquo(n, 2, 'r'). `if`(r=0, <<0, 1, 1, 4, 3, 11, 8>>, <<1, 2, 1, 1, 2, 1, 1>>))[1, 1]: seq(a(n), n=0..80);  # Alois P. Heinz, Mar 18 2012
  • Mathematica
    Table[GCD[Fibonacci[n + 1] - 1, Fibonacci[n]], {n, 1, 50}] (* Horst H. Manninger, Dec 19 2021 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,1,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,1,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,1,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,1,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,1,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,1,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,1; 1,0,0,0,-3,0,-1,0,1,0,3,0,0,0]^n*[0;1;1;2;1;1;4;1;3;2;11;1;8;1])[1,1] \\ Charles R Greathouse IV, Jun 20 2017

Formula

G.f.: -x*(x^12-x^11+2*x^10-x^9-2*x^8-x^7-6*x^6+x^5-2*x^4+x^3+2*x^2+x+1) / (x^14-3*x^10-x^8+x^6+3*x^4-1) = -1/(x^4+x^2-1) + (x^2+1)/(x^4-x^2-1) + (x+2)/(6*(x^2+x+1)) + (x-2)/(6*(x^2-x+1)) - 2/(3*(x+1)) - 2/(3*(x-1)). - Alois P. Heinz, Mar 18 2012
a(n) = gcd(Fibonacci(n+1)-1, Fibonacci(n)). - Horst H. Manninger, Dec 19 2021
From Aba Mbirika, Jan 21 2022: (Start)
a(n) = gcd(F(n+1)-1, F(n+2)-1).
a(n) = Lcm_{A001175(m) divides n} m.
Proofs of these formulas are given in Theorems 15 and 25 of the Guyer-Mbirika paper. (End)

Extensions

More terms from Alois P. Heinz, Mar 18 2012

A075536 a(n) = ((1+(-1)^n)*T(n+1) + (1-(-1)^n)*S(n))/2, where T(n) = tribonacci numbers A000073, S(n) = generalized tribonacci numbers A001644.

Original entry on oeis.org

0, 1, 1, 7, 4, 21, 13, 71, 44, 241, 149, 815, 504, 2757, 1705, 9327, 5768, 31553, 19513, 106743, 66012, 361109, 223317, 1221623, 755476, 4132721, 2555757, 13980895, 8646064, 47297029, 29249425, 160004703, 98950096, 541292033, 334745777
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 23 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Maple
    A075536 := proc(n)
        if type(n,'even') then
            A000073(n+1) ;
        else
            A001644(n) ;
        end if;
    end proc:
    seq(A075536(n),n=0..80) ; # R. J. Mathar, Aug 05 2021
  • Mathematica
    CoefficientList[Series[(x+x^2+4x^3+x^4-x^5)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
    LinearRecurrence[{0,3,0,1,0,1},{0,1,1,7,4,21},40] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6))) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    (x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(2n) = A073717(n) = A000073(2n+1).
a(2n+1) = A001644(2n+1).
a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=0, a(1)=1, a(2)=1, a(3)=7, a(4)=4, a(5)=21.
O.g.f.: x*(1 + x + 4*x^2 + x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).

Extensions

Index in definition corrected. - R. J. Mathar, Aug 05 2021

A330051 a(n) = 1 + F(2*n+1) - (F(n+4) - (-1)^n*F(n-2))/2 where F=A000045.

Original entry on oeis.org

0, 0, 2, 7, 25, 72, 208, 564, 1530, 4059, 10769, 28336, 74560, 195576, 513010, 1344063, 3521385, 9221688, 24149456, 63230860, 165558250, 433454835, 1134845857, 2971111392, 7778592000, 20364739632, 53315898338, 139583151799, 365434267705, 956720165544
Offset: 0

Views

Author

Michael Somos, Dec 01 2019

Keywords

Examples

			G.f. = 2*x^2 + 7*x^3 + 25*x^4 + 72*x^5 + 208*x^6 + 564*x^7 + 1530*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + Fibonacci[2 n + 1] - (Fibonacci[n + 4] - (-1)^n Fibonacci[n - 2])/2
  • PARI
    {a(n) = 1 + fibonacci(2*n + 1) - (fibonacci(n + 4) - (-1)^n*fibonacci(n - 2))/2};

Formula

a(n) = 1 + F(2*n+1) - F(n+2) - (F(-n+2) + F(n+1))/2.
G.f.: (2*x^2 - x^3 - x^4 + x^5) / (1 - 4*x + x^2 + 11*x^3 - 11*x^4 - x^5 + 4*x^6 - x^7).
b(n) + a(n) * sqrt(5) = F(2*n+2) * Product_{k=2..n} 1 / (1 - q^k/(1 - q^(2*k))) where q = (sqrt(5)-1)/2 and b=A330050.
a(n) = A005013(floor(n/2)) * A329421(n).

Extensions

Definition corrected by N. J. A. Sloane, May 29 2022 following a suggestion from Kevin Ryde.
Additional corrections by Eric Rowland, May 31 2022

A075676 Sequences A001644 and A000073 interleaved.

Original entry on oeis.org

3, 1, 3, 2, 11, 7, 39, 24, 131, 81, 443, 274, 1499, 927, 5071, 3136, 17155, 10609, 58035, 35890, 196331, 121415, 664183, 410744, 2246915, 1389537, 7601259, 4700770, 25714875, 15902591, 86992799, 53798080, 294294531, 181997601
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 24 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3+x- 6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[(3+x-6x^2-x^3-x^4)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
    LinearRecurrence[{0,3,0,1,0,1},{3,1,3,2,11,7},40] (* Harvey P. Dale, May 01 2014 *)
  • PARI
    my(x='x+O('x^40)); Vec((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    ((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = A000073(n) if n odd, a(n) = A001644(n) if n even.
a(n) = ((1-(-1)^n)*T(n) + (1+(-1)^n)*S(n))/2, where T(n) = A000073(n), S(n) = A001644(n).
a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=3, a(1)=1, a(2)=3, a(3)=2, a(4)=11, a(5)=7.
O.g.f.: (3 + x - 6*x^2 - x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).
a(n) = T(n) + (1+(-1)^n)*(T(n-1) + (3/2)*T(n-2)).

A138123 Antidiagonal sums of a triangle of coefficients of recurrences of the Fibonacci sequence.

Original entry on oeis.org

1, 1, 3, 0, 3, 0, 7, 1, 11, 0, 17, 0, 29, 1, 47, 0, 75, 0, 123, 1, 199, 0, 321, 0, 521, 1, 843, 0, 1363, 0, 2207, 1, 3571, 0, 5777, 0, 9349, 1, 15127, 0, 24475, 0, 39603, 1, 64079, 0, 103681, 0, 167761, 1, 271443, 0, 439203, 0, 710647, 1, 1149851, 0, 1860497, 0
Offset: 1

Views

Author

Paul Curtz, May 04 2008

Keywords

Comments

Consider the irregular sparse triangle T(p,p) = A000204(p), T(p,2p)= -A033999(p)=(-1)^(p+1), T(p,m) =0 else; 1<=m<=2p, p>=1. Then a(n)=sum_{m=1..[2(n+1)/3]} T(1+n-m,m).
The T are coefficients in recurrences f(n)=sum_{m=1..2p} T(p,m)*f(n-m).
The recurrence for p=1, f(n)=f(n-1)+f(n-2), is satisfied by the Fibonacci sequence A000045. The recurrence for p=2, f(n)=3f(n-2)-f(n-4), is satisfied by A005013, A005247, A075091, A075270, A108362 and A135992.
Conjecture: The Fibonacci sequence F obeys all the recurrences: A000045(n)=F(n)= L(p)*F(n-p)-(-1)^p*F(n-2p), any p>0, L=A000204.
[Proof: conjecture is equivalent to the existence of a g.f. of F with denominator 1-L(p)x^p+(-1)^p*x^(2p). Since 1-x-x^2 is known to be a denominator of such a g.f. of A000045, the conjecture is that 1-L(p)*x^p+(-1)^p*x^(2p) can be reduced to 1-x-x^2. One finds: {1-L(p)*x^p+(-1)^p*x^(2p)}/(1-x-x^2) = sum{n=0..p-1}F(n+1)x^n-sum{n=0..p-2} (-1)^(n+p)F(n+1)x^(2p-n-2) is a polynomial with integer coefficients, which is proved by multiplication with 1-x-x^2 and via F(n)+F(n+1)=F(n+2) and L(n)=F(n-1)+F(n+1). - R. J. Mathar, Jul 10 2008].
Conjecture: The Lucas sequence L also obeys all the recurrences: L(n)= L(p)*L(n-p)-(-1)^p*L(n-2p), any p>0, L=A000204.

Examples

			The triangle T(p,m) with Lucas numbers on the diagonal starts
  1, 1;
  0, 3, 0,-1;
  0, 0, 4, 0, 0, 1;
  0, 0, 0, 7, 0, 0, 0,-1;
  0, 0, 0, 0,11, 0, 0, 0, 0, 1;
The antidiagonal sums are a(1)=1. a(2)=0+1=1. a(3)=0+3=3. a(4)=0+0+0=0. a(5)=0+0+4-1=3.
		

Formula

Row sums: Sum_{m=1..2p} T(p,m) = A098600(p).
Conjectures from Chai Wah Wu, Apr 15 2024: (Start)
a(n) = a(n-2) - a(n-3) + a(n-4) + a(n-5) + a(n-7) for n > 7.
G.f.: x*(-x^5 - 2*x^2 - x - 1)/((x + 1)*(x^2 - x + 1)*(x^4 + x^2 - 1)). (End)

Extensions

Edited and extended by R. J. Mathar, Jul 10 2008

A259875 Irregular triangle read by rows: coefficients (highest degree first) of polynomials defined by p_0(x)=0, p_1(x)=p_2(x)=1, p_3(x)=x+1; p_n(x)=x*p_{n-2}(x)-p_{n-4}(x).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 1, 1, -1, 1, 0, -1, 1, 1, -2, -1, 1, 0, -2, 0, 1, 1, -3, -2, 1, 1, 0, -3, 0, 1, 1, 1, -4, -3, 3, 1, 1, 0, -4, 0, 3, 0, 1, 1, -5, -4, 6, 3, -1, 1, 0, -5, 0, 6, 0, -1, 1, 1, -6, -5, 10, 6, -4, -1, 1, 0, -6, 0, 10, 0, -4, 0, 1, 1, -7, -6, 15, 10, -10, -4, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2015

Keywords

Examples

			Triangle begins:
0;
1;
1;
1, 1;
1, 0;
1, 1, -1;
1, 0, -1;
1, 1, -2, -1;
1, 0, -2,  0;
1, 1, -3, -2, 1;
1, 0, -3,  0, 1;
1, 1, -4, -3, 3, 1;
1, 0, -4,  0, 3, 0;
...
		

Crossrefs

p_n(3) gives A005013.

Programs

  • Maple
    p:= proc(n) option remember; expand(`if`(n=0, 0,
         `if`(n<3, 1, `if`(n=3, x+1, x*p(n-2)-p(n-4)))))
        end:
    T:= n-> `if`(n=0, 0, (s-> seq(coeff(s, x, degree(s)-i)
            , i=0..degree(s)))(p(n))):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jul 10 2015
  • Mathematica
    p[0] = 0&; p[1] = p[2] = 1&; p[3] = #+1&; p[n_][x_] := p[n, x] = x*p[n-2][x] - p[n-4][x];
    row[0] = {0}; row[n_] := CoefficientList[p[n][x], x] // Reverse;
    Table[row[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jun 12 2018 *)

Extensions

More terms from Alois P. Heinz, Jul 10 2015
Previous Showing 11-16 of 16 results.