A090468
Class 13+ primes.
Original entry on oeis.org
545587687, 852480757, 1048438561, 1150849009, 1323457987, 1745980517, 1756123441, 1785398401, 1798736161, 1892507347, 1937020021, 2002155601, 2136716521, 2150905573, 2229004913, 2548101601, 2671514917, 2838761021
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, A18.
-
For Maple program see Mathar link in A005105.
-
PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[195000000], ClassPlusNbr[ Prime[ # ]] == 13 &]]
A129470
Primes p such that the largest prime factor of p+1 has Erdős-Selfridge class+ < N-1 if p is of class N+.
Original entry on oeis.org
883, 1747, 2417, 2621, 3181, 3301, 3533, 3571, 3691, 3853, 4027, 4133, 4513, 4783, 4861, 4957, 5303, 5381, 5393, 5563, 5641, 5821, 6067, 6577, 6991, 7177, 7253, 7331, 8059, 8093, 8377, 8731, 8839, 8929, 8969, 9221, 9281, 9397, 9613, 9931
Offset: 1
a(3) = 883 = -1 + 2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 1+.
Cf.
A005105,
A005106,
A005107,
A005108,
A005113,
A081633,
A081634,
A081635,
A081636,
A081637,
A081638,
A081639,
A084071,
A090468,
A129469,
A129471,
A129472,
A129473,
A129474,
A129475,
A129477,
A129478.
-
class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129470(n=100,p=1,a=[])={ local(f); while( #a 3, f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f,2,-1, f[i]=class( f[i] ); if( f[i] > f[ #f], a=concat(a,p); /*print(#a," ",p);*/ break))); a}
A129474
Primes of Erdos-Selfridge class 14+.
Original entry on oeis.org
1704961513, 7281416041, 7638227617, 9462536833, 11934730597, 13237911481, 13282423003, 13522629793, 13942983841, 14185279861, 16029089501, 16221987853, 17434233041, 18171787987, 19639505461, 20717555041
Offset: 1
a(1) = A005113[14] = 1704961513 = -1+2*852480757, where 852480757 = A090468[2]
-
class(n, s=1) = { if(!isprime(n),0, if(!(n=factor(n+s)[,1]) || n[ #n]<=3,1, for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1]))};
nextclass(a,s=1,p,n=[])={if(!p,p=nextprime(a[ #a]+1)); print("producing primes of class ",1+class(a[1],s),["+","-"][1+(s<0)]," up to 2*",p); for(i=1,#a,for(k=1,p/a[i],if(isprime(2*k*a[i]-s),n=concat(n,2*k*a[i]-s))));vecsort(n)};
A129474=nextclass(A090468,1)
A129471
Primes p of Erdos-Selfridge class 3+ with largest prime factor of p+1 not of class 2+.
Original entry on oeis.org
883, 1747, 2417, 2621, 3301, 3533, 3571, 3691, 3853, 4027, 4133, 4783, 4861, 5303, 5381, 5393, 5563, 5641, 5821, 6577, 6991, 7253, 7331, 8059, 8093, 8377, 8839, 8929, 8969, 9221, 9281, 9613, 9931, 10069, 10477, 10487, 10601, 10607, 10903, 11491
Offset: 1
a(1) = 883 = -1+2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 1+.
-
class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129471(n=100,p=1,a=[])={ local(f); while( #a 3 & 2 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 3 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 3, a=concat(a,p); /*print(#a," ",p)*/)); a}
A129473
Primes p of Erdos-Selfridge class 5+ with largest prime factor of p+1 not of class 4+.
Original entry on oeis.org
15913, 18541, 22921, 36353, 47741, 49201, 52267, 55333, 60589, 64969, 66137, 66721, 69203, 72707, 73291, 74167, 75773, 78401, 79861, 80737, 82051, 84533, 90227, 90373, 95191, 95483, 95629, 97673, 99133, 101323, 103951, 104681, 104827
Offset: 1
a(1) = 15913 = -1+2*73*109 is a prime of class 5+ since 73 is of class 4+, but the largest divisor of 15913+1 is 109 which is only of class 2+.
-
class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129473(n=100,p=1,a=[])={ local(f); while( #a 3 & 4 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 5 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 5, a=concat(a,p); /*print(#a," ",p)*/)); a}
A129477
Primes p of Erdos-Selfridge class 6+ with largest prime factor of p+1 not of class 5+.
Original entry on oeis.org
2146141, 2182897, 2954773, 3199813, 3224317, 3285577, 3383593, 3505933, 3555121, 3567373, 3653137, 3775417, 3864037, 4250977, 4298533, 4328053, 4493773, 4504651, 4519981, 4572037, 4647277, 4692637, 4719061, 4726537
Offset: 1
a(1) = 2146141 = -1+2*1021*1051 = A129469[6] is a prime of class 6+ since 2146141+1 has prime factor 1021=A081633[1]=A005113[5] of class 5+, but the largest prime factor of 2146141+1 is 1051=A005107[65] of class 3+.
-
class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; a129477(n=100,p=1,a=[])={local(f,a5=A005113[5]);p=max(p,a5*nextprime(a5+1)*2-1); while( #a2 & f[ #f-1] >= a5 & 5 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 6 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 6, a=concat(a,p); print(#a," ",p))); a}
A129478
Primes p of Erdos-Selfridge class 7+ with largest prime factor of p+1 not of class 6+.
Original entry on oeis.org
17227801, 18207913, 18592957, 19433053, 19608073, 19678081, 20028121, 20518177, 20658193, 20833213, 21043237, 21218257, 21533293, 21743317, 22128361, 22303381, 23668537, 25068697, 25418737, 25453741
Offset: 1
a(1) = 17227801 = -1+2*2917*2953 = A129469[7] is a prime of class 7+ since 17227801+1 has prime factor 2917 = A081634[1] = A005113[6] of class 6+, but the largest prime factor of 17227801+1 is 2953 = A005107[175] of class 3+.
-
class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; a129478(n=100,p=1,a=[])={local(f,a6=A005113[6]);p=max(p,a6*nextprime(a6+1)*2-2); while( #a2 & f[ #f-1] >= a6 & 6 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 7 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 7, a=concat(a,p); print(#a," ",p))); a}
A293194
Primes of the form 2^q * 3^r * 5^s - 1.
Original entry on oeis.org
2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 47, 53, 59, 71, 79, 89, 107, 127, 149, 179, 191, 199, 239, 269, 359, 383, 431, 449, 479, 499, 599, 647, 719, 809, 863, 971, 1151, 1249, 1279, 1439, 1499, 1619, 1999, 2399, 2591, 2699, 2879, 2999, 4049, 4373, 4799, 4999, 5119, 5399, 6143, 6911
Offset: 1
3 is a member because 3 is a prime number and 2^2 * 3^0 * 5^0 - 1 = 3.
89 is a member because 89 is a prime number and 2^1 * 3^2 * 5^1 - 1 = 89.
list of (q, r, s): (0, 1, 0), (2, 0, 0), (1, 1, 0), (3, 0, 0), (2, 1, 0), (1, 2, 0), (2, 0, 1), (3, 1, 0),(1, 1, 1), (5, 0, 0), (4, 1, 0), (1, 3, 0), (2, 1, 1), ...
-
K := 10^5 + 1;; # to get all terms less than or equal to K
A := Filtered([1 .. K], IsPrime);; I := [3, 5];;
B := List(A, i -> Elements(Factors(i + 1)));;
C := List([0 .. Length(I)], j -> List(Combinations(I, j), i -> Concatenation([2], i)));
A293194 := Concatenation([2], List(Set(Flat(List([1 .. Length(C)], i -> List([1 .. Length(C[i])], j -> Positions(B, C[i][j]))))), i -> A[i]));
-
N:= 10^6: # to get all terms <= N
R:= {}:
for c from 0 to floor(log[5]((N+1))) do
for b from 0 to floor(log[3]((N+1)/5^c)) do
R:= R union select(isprime, {seq(2^a*3^b*5^c-1,
a=0..ilog2((N+1)/(3^b*5^c)))})
od od:
sort(convert(R,list)); # Robert Israel, Oct 15 2017
-
With[{n = 7000}, Sort@ Select[Flatten@ Table[2^q * 3^r * 5^s - 1, {q, 0, Log[2, n/(1)]}, {r, 0, Log[3, n/(2^q)]}, {s, 0, Log[5, n/(2^q * 3^r)]}], PrimeQ]] (* Michael De Vlieger, Oct 02 2017 *)
-
lista(nn) = {forprime(p=2,nn, if (vecmax(factor(p+1)[,1]) <= 5, print1(p, ", ")););} \\ Michel Marcus, Oct 06 2017
-
from itertools import count, islice
from sympy import integer_log, isprime
def A293194_gen(): # generator of terms
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = x
for i in range(integer_log(x,5)[0]+1):
for j in range(integer_log(m:=x//5**i,3)[0]+1):
c -= (m//3**j).bit_length()
return c
yield from filter(isprime,(bisection(lambda k:n+f(k),n,n)-1 for n in count(1)))
A293194_list = list(islice(A293194_gen(),30)) # Chai Wah Wu, Mar 31 2025
A048252
Largest number whose sum of divisors is 6^n.
Original entry on oeis.org
1, 5, 22, 187, 1219, 7597, 46117, 278857, 1676377, 10067797, 60450517, 362758177, 2176626817, 13060193977, 78363525817, 470183516857, 2820894903487, 16926601754197, 101559860054047, 609359671998037, 3656158318966357
Offset: 0
-
a(n) = {sn = 6^n; forstep(x=sn, 1, -1, if (sigma(x) == sn, return (x)););} \\ Michel Marcus, Dec 15 2013
A069356
Primes of the form 2^i*3^j - (i+j) with i, j >= 0.
Original entry on oeis.org
2, 5, 7, 43, 67, 103, 157, 281, 503, 641, 1451, 3061, 4597, 6553, 8179, 10357, 15541, 34981, 78721, 209939, 524269, 1062869, 2097131, 13436909, 25509151, 28311529, 63700969, 113246183, 153054989, 516560633, 573308903, 774840959, 805306339
Offset: 1
-
Take[ Select[ Union[ Flatten[ Table[2^i*3^j - (i + j), {i, 0, 28}, {j, 0, 18}]]], PrimeQ[ # ] &], 33]
Comments