cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A090468 Class 13+ primes.

Original entry on oeis.org

545587687, 852480757, 1048438561, 1150849009, 1323457987, 1745980517, 1756123441, 1785398401, 1798736161, 1892507347, 1937020021, 2002155601, 2136716521, 2150905573, 2229004913, 2548101601, 2671514917, 2838761021
Offset: 1

Views

Author

Robert G. Wilson v, Nov 26 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[195000000], ClassPlusNbr[ Prime[ # ]] == 13 &]]

A129470 Primes p such that the largest prime factor of p+1 has Erdős-Selfridge class+ < N-1 if p is of class N+.

Original entry on oeis.org

883, 1747, 2417, 2621, 3181, 3301, 3533, 3571, 3691, 3853, 4027, 4133, 4513, 4783, 4861, 4957, 5303, 5381, 5393, 5563, 5641, 5821, 6067, 6577, 6991, 7177, 7253, 7331, 8059, 8093, 8377, 8731, 8839, 8929, 8969, 9221, 9281, 9397, 9613, 9931
Offset: 1

Views

Author

M. F. Hasler, Apr 16 2007

Keywords

Comments

In practice the class+ of a prime p is most often given by 1 + the class of the largest prime factor of p+1; terms of this sequence are counterexamples to this "rule". Terms of this sequence are at least of class 3+, since primes of class 1+ and 2+ have all prime factors of p+1 of class 1+. Terms a(k) of this sequence are >= -1 + 2*A005113(N-1) * nextprime(A005113(N-1)), where N is the class of a(k).

Examples

			a(3) = 883 = -1 + 2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 1+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129470(n=100,p=1,a=[])={ local(f); while( #a 3, f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f,2,-1, f[i]=class( f[i] ); if( f[i] > f[ #f], a=concat(a,p); /*print(#a," ",p);*/ break))); a}

A129474 Primes of Erdos-Selfridge class 14+.

Original entry on oeis.org

1704961513, 7281416041, 7638227617, 9462536833, 11934730597, 13237911481, 13282423003, 13522629793, 13942983841, 14185279861, 16029089501, 16221987853, 17434233041, 18171787987, 19639505461, 20717555041
Offset: 1

Views

Author

M. F. Hasler, Apr 16 2007

Keywords

Comments

Primes of class r (or r+) are by definition the primes p for which p + 1 has all factors of a lower class < r, but at least one factor of class r - 1. See A005113 for more information.
a(1..149) calculated using A090468 up to 37.5e9, which gives A129474(150) > 75e9.

Examples

			a(1) = A005113[14] = 1704961513 = -1+2*852480757, where 852480757 = A090468[2]
		

Crossrefs

Programs

  • PARI
    class(n, s=1) = { if(!isprime(n),0, if(!(n=factor(n+s)[,1]) || n[ #n]<=3,1, for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1]))};
    nextclass(a,s=1,p,n=[])={if(!p,p=nextprime(a[ #a]+1)); print("producing primes of class ",1+class(a[1],s),["+","-"][1+(s<0)]," up to 2*",p); for(i=1,#a,for(k=1,p/a[i],if(isprime(2*k*a[i]-s),n=concat(n,2*k*a[i]-s))));vecsort(n)};
    A129474=nextclass(A090468,1)

Formula

{ a(n) } = { p = 2*m*A090468(k)-1 | k=1,2,3... and m=1,2,3... such that p is prime and m has no factor of class > 13+ }

A129471 Primes p of Erdos-Selfridge class 3+ with largest prime factor of p+1 not of class 2+.

Original entry on oeis.org

883, 1747, 2417, 2621, 3301, 3533, 3571, 3691, 3853, 4027, 4133, 4783, 4861, 5303, 5381, 5393, 5563, 5641, 5821, 6577, 6991, 7253, 7331, 8059, 8093, 8377, 8839, 8929, 8969, 9221, 9281, 9613, 9931, 10069, 10477, 10487, 10601, 10607, 10903, 11491
Offset: 1

Views

Author

M. F. Hasler, Apr 17 2007

Keywords

Comments

Examples

			a(1) = 883 = -1+2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 1+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129471(n=100,p=1,a=[])={ local(f); while( #a 3 & 2 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 3 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 3, a=concat(a,p); /*print(#a," ",p)*/)); a}

A129473 Primes p of Erdos-Selfridge class 5+ with largest prime factor of p+1 not of class 4+.

Original entry on oeis.org

15913, 18541, 22921, 36353, 47741, 49201, 52267, 55333, 60589, 64969, 66137, 66721, 69203, 72707, 73291, 74167, 75773, 78401, 79861, 80737, 82051, 84533, 90227, 90373, 95191, 95483, 95629, 97673, 99133, 101323, 103951, 104681, 104827
Offset: 1

Views

Author

M. F. Hasler, Apr 17 2007

Keywords

Comments

Examples

			a(1) = 15913 = -1+2*73*109 is a prime of class 5+ since 73 is of class 4+, but the largest divisor of 15913+1 is 109 which is only of class 2+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129473(n=100,p=1,a=[])={ local(f); while( #a 3 & 4 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 5 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 5, a=concat(a,p); /*print(#a," ",p)*/)); a}

A129477 Primes p of Erdos-Selfridge class 6+ with largest prime factor of p+1 not of class 5+.

Original entry on oeis.org

2146141, 2182897, 2954773, 3199813, 3224317, 3285577, 3383593, 3505933, 3555121, 3567373, 3653137, 3775417, 3864037, 4250977, 4298533, 4328053, 4493773, 4504651, 4519981, 4572037, 4647277, 4692637, 4719061, 4726537
Offset: 1

Views

Author

M. F. Hasler, Apr 17 2007

Keywords

Comments

Examples

			a(1) = 2146141 = -1+2*1021*1051 = A129469[6] is a prime of class 6+ since 2146141+1 has prime factor 1021=A081633[1]=A005113[5] of class 5+, but the largest prime factor of 2146141+1 is 1051=A005107[65] of class 3+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; a129477(n=100,p=1,a=[])={local(f,a5=A005113[5]);p=max(p,a5*nextprime(a5+1)*2-1); while( #a2 & f[ #f-1] >= a5 & 5 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 6 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 6, a=concat(a,p); print(#a," ",p))); a}

A129478 Primes p of Erdos-Selfridge class 7+ with largest prime factor of p+1 not of class 6+.

Original entry on oeis.org

17227801, 18207913, 18592957, 19433053, 19608073, 19678081, 20028121, 20518177, 20658193, 20833213, 21043237, 21218257, 21533293, 21743317, 22128361, 22303381, 23668537, 25068697, 25418737, 25453741
Offset: 1

Views

Author

M. F. Hasler, Apr 17 2007

Keywords

Comments

Examples

			a(1) = 17227801 = -1+2*2917*2953 = A129469[7] is a prime of class 7+ since 17227801+1 has prime factor 2917 = A081634[1] = A005113[6] of class 6+, but the largest prime factor of 17227801+1 is 2953 = A005107[175] of class 3+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; a129478(n=100,p=1,a=[])={local(f,a6=A005113[6]);p=max(p,a6*nextprime(a6+1)*2-2); while( #a2 & f[ #f-1] >= a6 & 6 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 7 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 7, a=concat(a,p); print(#a," ",p))); a}

A293194 Primes of the form 2^q * 3^r * 5^s - 1.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 47, 53, 59, 71, 79, 89, 107, 127, 149, 179, 191, 199, 239, 269, 359, 383, 431, 449, 479, 499, 599, 647, 719, 809, 863, 971, 1151, 1249, 1279, 1439, 1499, 1619, 1999, 2399, 2591, 2699, 2879, 2999, 4049, 4373, 4799, 4999, 5119, 5399, 6143, 6911
Offset: 1

Views

Author

Muniru A Asiru, Oct 02 2017

Keywords

Comments

Mersenne primes A000668 occur when (q, r, s) = (q, 0, 0) with q > 0.
a(2) = 3 is a Mersenne prime but a(3) = 7 is not.
For n > 2, all terms = {1, 5} mod 6.

Examples

			3 is a member because 3 is a prime number and 2^2 * 3^0 * 5^0 - 1 = 3.
89 is a member because 89 is a prime number and 2^1 * 3^2 * 5^1 - 1 = 89.
list of (q, r, s): (0, 1, 0), (2, 0, 0), (1, 1, 0), (3, 0, 0), (2, 1, 0), (1, 2, 0), (2, 0, 1), (3, 1, 0),(1, 1, 1), (5, 0, 0), (4, 1, 0), (1, 3, 0), (2, 1, 1), ...
		

Crossrefs

Programs

  • GAP
    K := 10^5 + 1;; # to get all terms less than or equal to K
    A := Filtered([1 .. K], IsPrime);; I := [3, 5];;
    B := List(A, i -> Elements(Factors(i + 1)));;
    C := List([0 .. Length(I)], j -> List(Combinations(I, j), i -> Concatenation([2], i)));
    A293194 := Concatenation([2], List(Set(Flat(List([1 .. Length(C)], i -> List([1 .. Length(C[i])], j -> Positions(B, C[i][j]))))), i -> A[i]));
    
  • Maple
    N:= 10^6: # to get all terms <= N
    R:= {}:
    for c from 0 to floor(log[5]((N+1))) do
      for b from 0 to floor(log[3]((N+1)/5^c)) do
         R:= R union select(isprime, {seq(2^a*3^b*5^c-1,
             a=0..ilog2((N+1)/(3^b*5^c)))})
    od od:
    sort(convert(R,list)); # Robert Israel, Oct 15 2017
  • Mathematica
    With[{n = 7000}, Sort@ Select[Flatten@ Table[2^q * 3^r * 5^s - 1, {q, 0, Log[2, n/(1)]}, {r, 0, Log[3, n/(2^q)]}, {s, 0, Log[5, n/(2^q * 3^r)]}], PrimeQ]] (* Michael De Vlieger, Oct 02 2017 *)
  • PARI
    lista(nn) = {forprime(p=2,nn, if (vecmax(factor(p+1)[,1]) <= 5, print1(p, ", ")););} \\ Michel Marcus, Oct 06 2017
    
  • Python
    from itertools import count, islice
    from sympy import integer_log, isprime
    def A293194_gen(): # generator of terms
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = x
            for i in range(integer_log(x,5)[0]+1):
                for j in range(integer_log(m:=x//5**i,3)[0]+1):
                    c -= (m//3**j).bit_length()
            return c
        yield from filter(isprime,(bisection(lambda k:n+f(k),n,n)-1 for n in count(1)))
    A293194_list = list(islice(A293194_gen(),30)) # Chai Wah Wu, Mar 31 2025

A048252 Largest number whose sum of divisors is 6^n.

Original entry on oeis.org

1, 5, 22, 187, 1219, 7597, 46117, 278857, 1676377, 10067797, 60450517, 362758177, 2176626817, 13060193977, 78363525817, 470183516857, 2820894903487, 16926601754197, 101559860054047, 609359671998037, 3656158318966357
Offset: 0

Views

Author

Keywords

Comments

Terms of this sequence are products of distinct terms in A005105. - Ray Chandler, Sep 01 2010

Crossrefs

Programs

  • PARI
    a(n) = {sn = 6^n; forstep(x=sn, 1, -1, if (sigma(x) == sn, return (x)););} \\ Michel Marcus, Dec 15 2013

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
a(15)-a(20) from Donovan Johnson, Nov 22 2008
Edited and extended by Ray Chandler, Sep 01 2010

A069356 Primes of the form 2^i*3^j - (i+j) with i, j >= 0.

Original entry on oeis.org

2, 5, 7, 43, 67, 103, 157, 281, 503, 641, 1451, 3061, 4597, 6553, 8179, 10357, 15541, 34981, 78721, 209939, 524269, 1062869, 2097131, 13436909, 25509151, 28311529, 63700969, 113246183, 153054989, 516560633, 573308903, 774840959, 805306339
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Take[ Select[ Union[ Flatten[ Table[2^i*3^j - (i + j), {i, 0, 28}, {j, 0, 18}]]], PrimeQ[ # ] &], 33]

Extensions

Edited and extended by Robert G. Wilson v, May 09 2003
Previous Showing 21-30 of 52 results. Next