A293199
Primes of the form 2^q * 3^r * 7^s - 1.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 23, 31, 41, 47, 53, 71, 83, 97, 107, 127, 167, 191, 223, 251, 293, 383, 431, 503, 587, 647, 863, 881, 971, 1151, 1511, 1567, 2267, 2351, 2591, 2687, 3023, 3527, 3583, 4373, 4703, 4801, 6047, 6143
Offset: 1
3 is a member because it is a prime number and 2^2 * 3^0 * 7^0 - 1 = 3.
503 is a member because it is a prime number and 2^3 * 3^2 * 7^1 - 1 = 503.
list of (q, r, s): (0, 1 ,0), (2, 0, 0), (1, 1, 0), (3, 0, 0), (2, 1, 0), (1, 0, 1), (1, 2, 0), (3, 1, 0),(5, 0, 0), (1, 1, 1), (4, 1, 0), (1, 3, 0), (3, 2, 0), (2, 1, 1), ...
-
K:=10^5+1;; # to get all terms <=K
A:=Filtered([1..K],IsPrime);; I:=[3,7];;
B:=List(A,i->Elements(Factors(i+1)));;
C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));
A293199:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
-
N:= 10^4: # for terms <= N
S:= {1}:
for p in {2,3,7} do S:= map(proc(s) local i; seq(s*p^i,i=0..floor(log[p](N/s))) end proc, S) od:
sort(convert(select(isprime,map(`-`,S,1)),list)); # Robert Israel, Dec 17 2020
A293425
Primes of the form 2^a * 3^b * 5^c - 1 for positive a, b, c.
Original entry on oeis.org
29, 59, 89, 149, 179, 239, 269, 359, 449, 479, 599, 719, 809, 1439, 1499, 1619, 2399, 2699, 2879, 2999, 4049, 4799, 5399, 7499, 8999, 9719, 10799, 11519, 12149, 12959, 13499, 15359, 18749, 20249, 21599, 23039, 25919, 33749, 35999, 40499, 51839, 56249, 59999, 65609, 67499, 69119, 71999
Offset: 1
a(1) = 29 = 2^1 * 3^1 * 5^1 - 1.
a(2) = 59 = 2^2 * 3^1 * 5^1 - 1.
a(3) = 89 = 2^1 * 3^2 * 5^1 - 1.
a(4) = 149 = 2^1 * 3^1 * 5^2 - 1.
a(5) = 179 = 2^2 * 3^2 * 5^1 - 1.
list of (a, b, c): (1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2, 1), (4, 1, 1), (1, 3, 1), (3, 2, 1), (1, 2, 2), (5, 1, 1), (3, 1, 2), (4, 2, 1), (1, 4, 1), (5, 2, 1), (2, 1, 3), (2, 4, 1), ...
-
K:=10^5+1;; # to get all terms <= K.
A:=Filtered([1..K],IsPrime);;
A293425:=List(Positions(List(A,i->Elements(Factors(i+1))),[2,3,5]),i->A[i]);
-
N:= 10^6: # to get all terms < N
R:= {}:
for c from 1 to floor(log[5]((N+1)/6)) do
for b from 1 to floor(log[3]((N+1)/2/5^c)) do
R:= R union select(isprime, {seq(2^a*3^b*5^c-1,
a=1..ilog2((N+1)/(3^b*5^c)))})
od od:
sort(convert(R,list)); # Robert Israel, Oct 15 2017
-
With[{n = 10^5}, Sort@ Select[Flatten@ Table[2^a*3^b*5^c - 1, {a, Log2@ n}, {b, Log[3, n/(2^a)]}, {c, Log[5, n/(2^a*3^b)]}], PrimeQ]] (* Michael De Vlieger, Oct 11 2017 *)
-
lista(nn) = {forprime(p=2,nn, f = factor(p+1); if ((vecmax(f[,1]) <= 5) && (#f~==3), print1(p, ", ")););} \\ Michel Marcus, Oct 09 2017
-
from itertools import count, islice
from sympy import integer_log, isprime
def A293425_gen(): # generator of terms
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = x
for i in range(1,integer_log(x,5)[0]+1):
for j in range(1,integer_log(m:=x//5**i,3)[0]+1):
c -= (m//3**j).bit_length()-1
return c
yield from filter(isprime,(bisection(lambda k:n+f(k),n,n)-1 for n in count(1)))
A293425_list = list(islice(A293425_gen(),30)) # Chai Wah Wu, Mar 31 2025
A347977
Primes of the form 2^p * 3^q * 5^r * 7^s - 1.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 97, 107, 127, 139, 149, 167, 179, 191, 199, 223, 239, 251, 269, 293, 349, 359, 383, 419, 431, 449, 479, 499, 503, 587, 599, 647, 719, 809, 839, 863, 881, 971, 1049, 1151, 1249, 1259, 1279, 1399, 1439, 1499, 1511, 1567, 1619, 1889
Offset: 1
251 = 2^2 * 3^2 * 5^0 * 7^1 - 1 and 839 = 2^3 * 3^1 * 5^1 * 7^1 - 1 are terms.
-
With[{n = 2000}, Sort@ Select[Flatten@ Table[2^p * 3^q * 5^r * 7^s - 1, {p, 0, Log[2, n]}, {q, 0, Log[3, n/(2^p)]}, {r, 0, Log[5, n/(2^p * 3^q)]}, {s, 0, Log[7, n/(2^p * 3^q * 5^r)]}], PrimeQ]] (* Amiram Eldar, Sep 25 2021 after Michael De Vlieger at A293194 *)
-
isok(p) = isprime(p) && (vecmax(factor(p+1)[,1]) < 11); \\ Michel Marcus, Nov 10 2021
-
upto(limit)={my(P=[2,3,5,7]); local(L=List()); my(recurse(k,t) = if(t<=limit+1, if(k>#P, if(isprime(t-1), listput(L,t-1)), my(b=P[k]); for(e=0, logint(limit+1,b), self()(k+1, t*b^e))))); recurse(1, 1); vecsort(Vec(L))} \\ Andrew Howroyd, Nov 20 2021
-
from itertools import count, islice
from sympy import integer_log, isprime
def A347977_gen(): # generator of terms
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = x
for i in range(integer_log(x,7)[0]+1):
for j in range(integer_log(m:=x//7**i,5)[0]+1):
for k in range(integer_log(r:=m//5**j,3)[0]+1):
c -= (r//3**k).bit_length()
return c
yield from filter(isprime,(bisection(lambda k:n+f(k),n,n)-1 for n in count(1)))
A347977_list = list(islice(A347977_gen(),30)) # Chai Wah Wu, Mar 31 2025
A373464
Largest of a quadruple of primes p[1..4] such that (p[k]+1, k=1..4) is in geometric progression.
Original entry on oeis.org
23, 47, 107, 191, 499, 647, 719, 809, 863, 1249, 1439, 1999, 2591, 2879, 3023, 3779, 4079, 5323, 6911, 7039, 7127, 7559, 8231, 8231, 8747, 9839, 10289, 10289, 10499, 10499, 10529, 10691, 11279, 11519, 12959, 13229, 13309, 13999, 15551, 15551, 15971, 18143, 19207
Offset: 1
The terms of the sequence are column "p[4]" in the following table which lists the sequences of primes, and ratios of the geometric progression (p[k]+1):
n | p[1], p[2], p[3], p[4] | r = (p[k+1]+1) / (p[k]+1)
------+-------------------------+---------------------------
1 | 2, 5, 11, 23 | 2 = 6/3 = 12/6 = 24/12
2 | 5, 11, 23, 47 | 2 = 12/6 = 24/12 = 48/24
3 | 31, 47, 71, 107 | 3/2 = 48/32 = 72/48 = 108/72
4 | 2, 11, 47, 191 | 4 = 12/3 = 48/12 = 192/48
5 | 31, 79, 199, 499 | 5/2 = 80/32 = 200/80 = 500/200
6 | 2, 17, 107, 647 | 6 = 18/3 = 108/18 = 648/108
7 | 89, 179, 359, 719 | 2 = 180/90 = ...
8 | 29, 89, 269, 809 | 3 = 90/30 = ...
9 | 499, 599, 719, 863 | 6/5 = 600/500 = ...
10 | 79, 199, 499, 1249 | 5/2 = 200/80 = ...
11 | 179, 359, 719, 1439 | 2 = 360/180 = ...
12 | 53, 179, 599, 1999 | 10/3 = 180/54 = ...
Subsequence of
A089199 (primes p such that p+1 is divisible by a cube).
-
A373464_upto(N, show=0, D = 1, LIM=N\2) = { my(L=List()); forprime(p=1, LIM, my(denom = p+D); for(numer=denom+1, sqrtnint((N+D) * denom^2, 3), my(r=numer/denom); for(k=1,3, (type(denom * r^k)=="t_INT" && isprime(denom * r^k - D)) || next(2)); listput(L, denom * r^3 - D); show && printf(" | %4d, %4d, %4d, %4d | %s\n",denom-D, denom*r-D, denom*r^2-D, denom*r^3-D, numer/denom))); vecsort(L)}
-
from itertools import islice
from fractions import Fraction
from sympy import nextprime
def A373464_gen(): # generator of terms
p, plist, pset = 1, [], set()
while True:
p = nextprime(p)
for q in plist:
r = Fraction(q+1,p+1)
q2 = r*(q+1)-1
if q2 < 2:
break
if q2.denominator == 1:
q2 = int(q2)
if q2 in pset:
q3 = r*(q2+1)-1
if q3 < 2:
break
if q3.denominator == 1 and int(q3) in pset:
yield p
plist = [p]+plist
pset.add(p)
A373464_list = list(islice(A373464_gen(),20)) # Chai Wah Wu, Jul 16 2024
A293074
Primes of the form 2^q * 3^r * 11^s - 1.
Original entry on oeis.org
2, 3, 5, 7, 11, 17, 23, 31, 43, 47, 53, 71, 107, 127, 131, 191, 197, 241, 263, 383, 431, 593, 647, 863, 967, 971, 1151, 1187, 1451, 1583, 2111, 2591, 2903, 3167, 4373, 4751, 5323, 5807, 6143, 6911, 7127, 8191, 8447, 8747, 10691, 12671, 13121, 15551, 15971, 21383, 23327
Offset: 1
3 = a(2) = 2^2 * 3^0 * 11^0 - 1.
131 = a(15) = 2^2 * 3^1 * 11^1 - 1.
list of (q, r, s): (0, 1, 0), (2, 0, 0), (1, 1, 0), (3, 0, 0), (2, 1, 0), (1, 2, 0), (3, 1, 0), (5, 0, 0), (2, 0, 1), (4, 1, 0), (1, 3, 0), ...
-
K:=10^5+1;; # to get all terms <= K.
A:=Filtered([1..K],IsPrime);; I:=[3,11];;
B:=List(A,i->Elements(Factors(i+1)));;
C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));;
A293074:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
-
N:= 10^5: # to get all terms < N
S:=select(isprime, {seq(seq(seq(2^q*3^r*11^s-1, q=0..ilog2(floor(N/3^r/11^s))),r=0..floor(log[3](N/11^s))),s=0..floor(log[11](N)))}):
sort(convert(S,list)); # Robert Israel, Oct 03 2017
-
With[{nn=20},Take[Select[Union[Flatten[Table[2^q 3^r 11^s-1,{q,0,nn},{r,0,nn},{s,0,nn}]]],PrimeQ],60]] (* Harvey P. Dale, May 12 2019 *)
Showing 1-5 of 5 results.
Comments