cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 60 results.

A180512 Triangle of the number of alternating sign matrices according to the number of -1's.

Original entry on oeis.org

1, 2, 6, 1, 24, 16, 2, 120, 200, 94, 14, 1, 720, 2400, 2684, 1284, 310, 36, 2, 5040, 29400, 63308, 66158, 38390, 13037, 2660, 328, 26, 1
Offset: 1

Views

Author

Arvind Ayyer, Jan 20 2011

Keywords

Comments

The first column is the factorial, A000142.
The second column forms coefficients of Laguerre polynomials, A001810.
From Arvind Ayyer, Mar 15 2018: (Start)
Consider the row generating function A_n(x) = sum_k a(n,k) x^k. Then
A_n(0) = n!, A000142.
A_n(1) = number of ASM's, A005130.
A_n(2) = number of domino tilings of the Aztec diamond, A006125.
A_n(3) = 3-enumeration of n X n alternating-sign matrices, A059477. (End)

Examples

			In triangular format, the numbers of ASMs is as follows:
n=1:1
n=2:2
n=3:6,1
n=4:24,16,2
n=5:120,200,94,14,1
n=6:720,2400,2684,1284,310,36,2
n=7:5040,29400,63308,66158,38390,13037,2660,328,26,1
		

Crossrefs

Row sums are A005130

Extensions

T(7, 7) corrected by Arvind Ayyer, Feb 12 2018

A293932 Number of circularly chained n-tuples of 3 X 3 alternating sign matrices.

Original entry on oeis.org

20, 140, 3861, 7436
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2017

Keywords

Crossrefs

A306397 Sum of the coefficients in the Schur expansion of Product_{1<=i<=j<=n} (1+x_i+x_j), which is the total Chern class for the vector bundle Sym^2(E) where E is a vector bundle over a smooth complex projective variety of rank n with Chern roots x_1,...,x_n.

Original entry on oeis.org

3, 16, 147, 2304, 61347, 2768896, 211579212, 27349221376, 5977081440300, 2207706749337600, 1377785820669766875
Offset: 1

Views

Author

Sara Billey, Feb 12 2019

Keywords

Comments

Also, the sum of 2^{number of 1's in T} summed over all reverse flagged fillings T of partition shape contained in (n,n-1,...,1) with row i bounded by n-i.

Crossrefs

Cf. A005130.

A342181 Product of first n Robbins numbers.

Original entry on oeis.org

1, 1, 2, 14, 588, 252252, 1875745872, 409565359659456, 4443872618422784042496, 4052080633200943761869999708160, 524883317743439723147432404145717855232000, 16321637725818077271987866314412476606229589461376000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 04 2021

Keywords

Crossrefs

Cf. A005130.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1, b(n-1)*
          (n-1)!*(3*n-2)!/((2*n-2)!*(2*n-1)!))
        end:
    a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(n)) end:
    seq(a(n), n=0..12);  # Alois P. Heinz, Mar 04 2021
  • Mathematica
    Table[Product[Product[(3*j + 1)!/(k + j)!, {j, 0, k-1}], {k,1,n}], {n,0,12}]
    FoldList[Times, 1, Table[Product[(3*j + 1)!/(n + j)!, {j, 0, n - 1}], {n, 1, 12}]]

Formula

a(n) = Product_{k=1..n} A005130(k).
a(n) ~ Pi^(n/3 + 1/6) * 3^(n^3/2 + 3*n^2/4 + n/18 - 13/216) * exp(n/6 + 11*zeta(3)/(144*Pi^2) + 19/216) / (BarnesG(1/3)^(2/3) * n^(5*n/36 + 5/72) * 2^(2*n^3/3 + n^2 - n/12 - 1/12) * A^(n/3 + 19/18) * Gamma(1/3)^(2*n/3 + 7/9)), where A is the Glaisher-Kinkelin constant A074962.

A363685 Irregular triangle read by rows: T(n,k) is the number of descending plane partitions of order n with the sum of the parts equal to k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 3, 4, 4, 7, 7, 10, 11, 14, 14, 18, 18, 21, 21, 23, 22, 25, 22, 23, 21, 21, 18, 18, 14, 14, 11, 10, 7, 7, 4, 4, 3, 2, 1, 1, 0, 1
Offset: 1

Views

Author

Ludovic Schwob, Jun 15 2023

Keywords

Examples

			Rows 1 through 5 are
  1;
  1, 0, 1;
  1, 0, 1, 1, 1, 1, 1, 0, 1;
  1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1;
  1, 0, 1, 1, 2, 3, 4, 4, 7, 7, 10, 11, 14, 14, 18, 18, 21, 21, 23, 22, 25, 22, 23, 21, 21, 18, 18, 14, 14, 11, 10, 7, 7, 4, 4, 3, 2, 1, 1, 0, 1.
		

Crossrefs

Row sums give A005130.

Formula

T(0, 0) = 1, T(1, 0) = 1, T(n, k) = 0 for k < 0 or k > (1/3)*(n+1)*n*(n-1).

A363689 Number of alternating sign matrices of size n which are indecomposable by direct and skew sums.

Original entry on oeis.org

1, 1, 0, 1, 16, 257, 5636, 187432, 9956054, 867875816, 125861715682, 30575624363575, 12486657463326416, 8588874417105963246, 9960958211434474577452, 19489076635898035234022220, 64349049302453152886635937502, 358611453994361731825817399132622, 3373425033361375072576454177693810076
Offset: 0

Views

Author

Ludovic Schwob, Jun 15 2023

Keywords

Examples

			a(3) = 1 because the only ASM of size 3 indecomposable by direct and skew sums is
  [0  1 0]
  [1 -1 1]
  [0  1 0]
		

Crossrefs

Formula

G.f.: 2*(2 - 1/ASM(x)) - ASM(x) where ASM(x) is the g.f. of A005130.

A366449 Number of smooth discrete aggregation functions defined on the finite chain L_n={0,1,...,n-1,n} having neutral element/absorbing element.

Original entry on oeis.org

2, 5, 18, 102, 970, 15947, 453872, 22174642, 1846384884, 260939482721, 62454382216334, 25285347265901814, 17304115945924822724, 20008412370393070905186, 39078178288867371807316956, 128893469663525965017925474046, 717867336460661639426421067202992, 6750439274904330523572066561554305664
Offset: 1

Views

Author

Marc Munar, Oct 10 2023

Keywords

Comments

The number of smooth discrete aggregation functions on the finite chain L_n={0,1,...,n-1,n} having neutral element/absorbing element e\in L_n, i.e., the number of monotonic increasing binary functions F: L_n^2->L_n such that F(0,0)=0 and F(n,n)=n (discrete aggregation function); F(x+1,y)-F(x,y)<=1 and F(x,y+1)-F(x,y)<= 1 (smooth); and F(x,a)=F(a,x)=x (neutral element) or F(x,a)=F(a,x)=a (absorbing element).

Crossrefs

Cf. A005130.

Programs

  • Mathematica
    Table[2*Product[Factorial[3 i + 1]/Factorial[n + i], {i, 0, n - 1}] +
      Sum[Product[Factorial[3 i + 1]/Factorial[a + i], {i, 0, a - 1}]*
        Product[Factorial[3 i + 1]/Factorial[n - a + i], {i, 0, n - a - 1}], {a, 1, n - 1}], {n, 1, 13}]

Formula

a(n) = 2*Product_{i=0..n-1} (3i+1)!/(n+i)!+ Sum_{a=1..n-1}(Product_{i=0..a-1} (3i+1)!/(a+i)!)*(Product_{i=0..n-a-1} (3i+1)!/(n-a+i)!).
a(n) ~ exp(1/36) * Pi^(1/3) * 3^(3*n^2/2 - 7/36) / (A^(1/3) * Gamma(1/3)^(2/3) * n^(5/36) * 2^(2*n^2 - 17/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 18 2023

A383875 Number of pairs in the Bruhat order of type A_n.

Original entry on oeis.org

1, 3, 19, 213, 3781, 98407, 3550919
Offset: 0

Views

Author

Dmitry I. Ignatov, May 18 2025

Keywords

Comments

The number of ordered pairs in the Bruhat poset of the Weyl group A_n (isomorphic to the symmetric group S_{n+1}).

Examples

			For n=0, the only element is 1 (identity) so a(0)=1.
For n=1 the elements are 1 (identity) and s1. The order relation consists of pairs (1, 1), (1, s1), and (s1, s1). So a(1) = 3.
For n=2 the line (Hasse) diagram is below.
       s1*s2*s1
        /   \
      s2*s1 s1*s2
       |  X  |
       s2    s1
        \   /
          1
The order relation consists of the six reflexive pairs, the eight pairs shown in the diagram as edges, and the five pairs (1, s2*s1), (1, s1*s2), (1, s1*s2*s1), (s1, s1*s2*s1), and (s2, s1*s2*s1). So a(2) = 6+8+5 = 19.
		

References

  • A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Springer, 2009, 27-64.

Crossrefs

Cf. A000142 (the order size), A002538 (edges in the cover relation), A005130 (the size of Dedekind-MacNeille completion), A384061 (antichains), A384062 (maximal antichains).

Extensions

a(0)=1 prepended by Sara Billey, Jul 02 2025

A384687 Number of elements in the Dedekind-MacNeille completion of the Bruhat order on D_n.

Original entry on oeis.org

4, 42, 1292, 114976, 29735760
Offset: 2

Views

Author

Dmitry I. Ignatov, Jun 07 2025

Keywords

Comments

This sequence is the number of elements in the Dedekind-MacNeille completion (completion by cuts) of the Bruhat order of the Weyl group D_n. It is a type D analog of A378072.

Examples

			For n=2 the Bruhat order on D_2 consists of four elements, 1 (identity), s1, s2, and s2*s1. Its completion forms the diamond lattice and coincides with the order.
  s2*s1
   / \
  s1 s2
   \ /
    1
		

Crossrefs

Cf. A002866 (group D_n order), A005130 (completion for A_n), A378072 (completion for B_n).

A384959 Number of chains in the Bruhat order of type A_n.

Original entry on oeis.org

4, 36, 4524, 15166380, 2010484649524, 14206021962108887860
Offset: 1

Views

Author

Dmitry I. Ignatov, Jun 13 2025

Keywords

Comments

The number of chains in the Bruhat order of the Weyl group A_n (isomorphic to the symmetric group S_{n+1}).

References

  • A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Springer, 2009, 27-64.

Crossrefs

Cf. A061710 (maximal chains), A000142 (the order size), A005130 (the size of Dedekind-MacNeille completion), A384061 (number of antichains).
Previous Showing 51-60 of 60 results.