A180512
Triangle of the number of alternating sign matrices according to the number of -1's.
Original entry on oeis.org
1, 2, 6, 1, 24, 16, 2, 120, 200, 94, 14, 1, 720, 2400, 2684, 1284, 310, 36, 2, 5040, 29400, 63308, 66158, 38390, 13037, 2660, 328, 26, 1
Offset: 1
In triangular format, the numbers of ASMs is as follows:
n=1:1
n=2:2
n=3:6,1
n=4:24,16,2
n=5:120,200,94,14,1
n=6:720,2400,2684,1284,310,36,2
n=7:5040,29400,63308,66158,38390,13037,2660,328,26,1
A293932
Number of circularly chained n-tuples of 3 X 3 alternating sign matrices.
Original entry on oeis.org
20, 140, 3861, 7436
Offset: 1
- Heuer, Dylan, Chelsey Morrow, Ben Noteboom, Sara Solhjem, Jessica Striker, and Corey Vorland. "Chained permutations and alternating sign matrices - Inspired by three-person chess." Discrete Mathematics 340, no. 12 (2017): 2732-2752. Also arXiv:1611.03387.
A306397
Sum of the coefficients in the Schur expansion of Product_{1<=i<=j<=n} (1+x_i+x_j), which is the total Chern class for the vector bundle Sym^2(E) where E is a vector bundle over a smooth complex projective variety of rank n with Chern roots x_1,...,x_n.
Original entry on oeis.org
3, 16, 147, 2304, 61347, 2768896, 211579212, 27349221376, 5977081440300, 2207706749337600, 1377785820669766875
Offset: 1
- S. Billey, B. Rhoades, and V. Tewari, Boolean product polynomials, Schur positivity, and Chern plethysm, arXiv:1902.11165 [math.CO], 2019.
- A. Lascoux, Classes de Chern d'un produit tensoriel, C. R. Acad. Sci. Paris Ser. A-B286 (1978), 385--387.
A342181
Product of first n Robbins numbers.
Original entry on oeis.org
1, 1, 2, 14, 588, 252252, 1875745872, 409565359659456, 4443872618422784042496, 4052080633200943761869999708160, 524883317743439723147432404145717855232000, 16321637725818077271987866314412476606229589461376000000
Offset: 0
-
b:= proc(n) option remember; `if`(n<2, 1, b(n-1)*
(n-1)!*(3*n-2)!/((2*n-2)!*(2*n-1)!))
end:
a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(n)) end:
seq(a(n), n=0..12); # Alois P. Heinz, Mar 04 2021
-
Table[Product[Product[(3*j + 1)!/(k + j)!, {j, 0, k-1}], {k,1,n}], {n,0,12}]
FoldList[Times, 1, Table[Product[(3*j + 1)!/(n + j)!, {j, 0, n - 1}], {n, 1, 12}]]
A363685
Irregular triangle read by rows: T(n,k) is the number of descending plane partitions of order n with the sum of the parts equal to k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 3, 4, 4, 7, 7, 10, 11, 14, 14, 18, 18, 21, 21, 23, 22, 25, 22, 23, 21, 21, 18, 18, 14, 14, 11, 10, 7, 7, 4, 4, 3, 2, 1, 1, 0, 1
Offset: 1
Rows 1 through 5 are
1;
1, 0, 1;
1, 0, 1, 1, 1, 1, 1, 0, 1;
1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1;
1, 0, 1, 1, 2, 3, 4, 4, 7, 7, 10, 11, 14, 14, 18, 18, 21, 21, 23, 22, 25, 22, 23, 21, 21, 18, 18, 14, 14, 11, 10, 7, 7, 4, 4, 3, 2, 1, 1, 0, 1.
A363689
Number of alternating sign matrices of size n which are indecomposable by direct and skew sums.
Original entry on oeis.org
1, 1, 0, 1, 16, 257, 5636, 187432, 9956054, 867875816, 125861715682, 30575624363575, 12486657463326416, 8588874417105963246, 9960958211434474577452, 19489076635898035234022220, 64349049302453152886635937502, 358611453994361731825817399132622, 3373425033361375072576454177693810076
Offset: 0
a(3) = 1 because the only ASM of size 3 indecomposable by direct and skew sums is
[0 1 0]
[1 -1 1]
[0 1 0]
A366449
Number of smooth discrete aggregation functions defined on the finite chain L_n={0,1,...,n-1,n} having neutral element/absorbing element.
Original entry on oeis.org
2, 5, 18, 102, 970, 15947, 453872, 22174642, 1846384884, 260939482721, 62454382216334, 25285347265901814, 17304115945924822724, 20008412370393070905186, 39078178288867371807316956, 128893469663525965017925474046, 717867336460661639426421067202992, 6750439274904330523572066561554305664
Offset: 1
-
Table[2*Product[Factorial[3 i + 1]/Factorial[n + i], {i, 0, n - 1}] +
Sum[Product[Factorial[3 i + 1]/Factorial[a + i], {i, 0, a - 1}]*
Product[Factorial[3 i + 1]/Factorial[n - a + i], {i, 0, n - a - 1}], {a, 1, n - 1}], {n, 1, 13}]
A383875
Number of pairs in the Bruhat order of type A_n.
Original entry on oeis.org
1, 3, 19, 213, 3781, 98407, 3550919
Offset: 0
For n=0, the only element is 1 (identity) so a(0)=1.
For n=1 the elements are 1 (identity) and s1. The order relation consists of pairs (1, 1), (1, s1), and (s1, s1). So a(1) = 3.
For n=2 the line (Hasse) diagram is below.
s1*s2*s1
/ \
s2*s1 s1*s2
| X |
s2 s1
\ /
1
The order relation consists of the six reflexive pairs, the eight pairs shown in the diagram as edges, and the five pairs (1, s2*s1), (1, s1*s2), (1, s1*s2*s1), (s1, s1*s2*s1), and (s2, s1*s2*s1). So a(2) = 6+8+5 = 19.
- A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Springer, 2009, 27-64.
A384687
Number of elements in the Dedekind-MacNeille completion of the Bruhat order on D_n.
Original entry on oeis.org
4, 42, 1292, 114976, 29735760
Offset: 2
For n=2 the Bruhat order on D_2 consists of four elements, 1 (identity), s1, s2, and s2*s1. Its completion forms the diamond lattice and coincides with the order.
s2*s1
/ \
s1 s2
\ /
1
A384959
Number of chains in the Bruhat order of type A_n.
Original entry on oeis.org
4, 36, 4524, 15166380, 2010484649524, 14206021962108887860
Offset: 1
- A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Springer, 2009, 27-64.
Cf.
A061710 (maximal chains),
A000142 (the order size),
A005130 (the size of Dedekind-MacNeille completion),
A384061 (number of antichains).
Comments