cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A319612 Number of regular simple graphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 1, 7, 13, 171, 931, 45935, 1084413, 155862511, 10382960971, 6939278572095, 2203360500122299, 4186526756621772343, 3747344008241368443819, 35041787059691023579970847, 156277111373303386104606663421, 4142122641757598618318165240180095
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. The span of a graph is the union of its edges.

Examples

			The a(4) = 7 edge-sets:
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1,4},{2,3}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Formula

a(n) = A295193(n) - 1.

Extensions

a(16)-a(18) from Andrew Howroyd, Sep 02 2019

A165626 Number of 5-regular graphs (quintic graphs) on 2n vertices.

Original entry on oeis.org

1, 0, 0, 1, 3, 60, 7849, 3459386, 2585136741, 2807105258926, 4221456120848125, 8516994772686533749, 22470883220896245217626, 75883288448434648617038134, 322040154712674550886226182668
Offset: 0

Views

Author

Jason Kimberley, Sep 22 2009

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-6)-regular graphs on 2n vertices.

Crossrefs

5-regular simple graphs: A006821 (connected), A165655 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), specified degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), this sequence (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).

Programs

Formula

Euler transform of A006821.

Extensions

Regular graphs cross-references edited by Jason Kimberley, Nov 07 2009
a(9) from Jason Kimberley, Nov 24 2009
a(10)-a(14) from Andrew Howroyd, Mar 10 2020

A165627 Number of 6-regular graphs (sextic graphs) on n vertices.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 21, 266, 7849, 367860, 21609301, 1470293676, 113314233813, 9799685588961, 945095823831333, 101114579937196179, 11945375659140003692, 1551593789610531820695, 220716215902794066709555, 34259321384370735003091907, 5782740798229835127025560294
Offset: 0

Views

Author

Jason Kimberley, Sep 22 2009

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (n-7)-regular graphs on n vertices.

Crossrefs

6-regular simple graphs: A006822 (connected), A165656 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), this sequence (k=6), A165628 (k=7), A180260 (k=8).

Programs

Formula

Euler transformation of A006822.

Extensions

Cross-references edited by Jason Kimberley, Nov 07 2009 and Oct 17 2011
a(17) from Jason Kimberley, Dec 30 2010
a(18)-a(24) from Andrew Howroyd, Mar 07 2020

A165628 Number of 7-regular graphs (septic graphs) on 2n vertices.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 1547, 21609301, 733351105935, 42700033549946255, 4073194598236125134140, 613969628444792223023625238, 141515621596238755267618266465449
Offset: 0

Views

Author

Jason Kimberley, Sep 22 2009

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-8)-regular graphs on 2n vertices.

Crossrefs

7-regular simple graphs: A014377 (connected), A165877 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), this sequence (k=7), A180260 (k=8).

Programs

Formula

Euler transformation of A014377.

Extensions

Cross-references edited by Jason Kimberley, Nov 07 2009 and Oct 17 2011
a(9)-a(11) from Andrew Howroyd, Mar 09 2020
a(12) from Andrew Howroyd, May 19 2020

A185315 Number of, not necessarily connected, regular simple graphs on n vertices with girth at least 5.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 2, 3, 2, 5, 3, 7, 4, 15, 6, 57, 8, 466, 12, 5801, 24, 91091, 3939, 1744378, 4132022, 163639295, 4018022192, 119026596500
Offset: 0

Views

Author

Jason Kimberley, Dec 12 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs with girth at least 5: this sequence (any k), A185305 (triangle); specified degree k: A185325 (k=2), A185335 (k=3).
Not necessarily connected regular simple graphs with girth at least g: A005176 (g=3), A185314 (g=4), this sequence (g=5), A185316 (g=6), A185317 (g=7), A185318 (g=8), A185319 (g=9).

Formula

a(n) = A186725(n) + A185215(n).

A198313 Number of, not necessarily connected, regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 4, 4, 15, 23, 162, 540, 18958, 389417, 50314520, 2942196930, 1698517018988
Offset: 0

Views

Author

Jason Kimberley, May 24 2012

Keywords

Crossrefs

Not necessarily connected k-regular simple graphs girth exactly 3: this sequence (any k), A185643 (triangle); fixed k: A026796 (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).
Not necessarily connected regular simple graphs girth exactly g: this sequence (g=3), A198314 (g=4), A198315 (g=5), A198316 (g=6), A198317 (g=7), A198318 (g=8).

Formula

a(n) = A186743(n) + A210713(n).
a(n) = A005176(n) - A185314(n).
a(n) is the sum of the n-th row of A185643.

A326784 BII-numbers of regular set-systems.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 16, 18, 25, 30, 32, 33, 42, 45, 51, 52, 63, 64, 75, 76, 82, 94, 97, 109, 115, 116, 127, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 160, 161, 192, 256, 258, 264, 266, 288, 385, 390, 408, 427, 428, 434, 458
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. A set-system is regular if all vertices appear the same number of times.

Examples

			The sequence of all regular set-systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  16: {{1,3}}
  18: {{2},{1,3}}
  25: {{1},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  32: {{2,3}}
  33: {{1},{2,3}}
  42: {{2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SameQ@@Length/@Split[Sort[Join@@bpe/@bpe[#]]]&]

A180260 Number of not necessarily connected 8-regular simple graphs on n vertices.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105935, 423187422492342, 281341168330848874, 214755319657939505396, 187549729101764460261505, 186685399408147545744203915, 210977245260028917322933165888
Offset: 0

Views

Author

Jason Kimberley, Jan 17 2011

Keywords

Comments

The Euler transformation currently does nothing: for n < 18, a(n) = A014378(n).

Examples

			The a(0)=1 graph is K_0 (vacuously 8-regular).
The a(9)=1 graph is K_9.
		

Crossrefs

8-regular simple graphs: A014378 (connected), A165878 (disconnected), this sequence (not necessarily connected).
Not necessarily connected regular simple graphs: A005176 (any degree), A051031 (triangular array), specified degree k: A000012 (k=0), A000012 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), this sequence (k=8).
8-regular not necessarily connected graphs: this sequence (simple graphs), A129437 (multigraphs with loops allowed), A129426 (multigraphs with loops forbidden).

Programs

Formula

Euler transformation of A014378.

Extensions

a(17)-a(22) from Andrew Howroyd, Mar 08 2020

A185316 Number of, not necessarily connected, regular simple graphs on n vertices with girth at least 6.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 3, 2, 3, 2, 4, 3, 6, 4, 7, 5, 13, 7, 42, 10, 398, 13, 7592, 18, 181251, 25, 4624534, 33, 122090591, 45, 3328930034, 61, 93990693977, 106
Offset: 0

Views

Author

Jason Kimberley, Dec 12 2012

Keywords

Crossrefs

Not necessarily connected regular simple graphs with girth at least g: A005176 (g=3), A185314 (g=4), A185315 (g=5), this sequence (g=6), A185317 (g=7), A185318 (g=8), A185319 (g=9).

Formula

a(n) = A186726(n) + A185216(n).

A185317 Number of, not necessarily connected, regular simple graphs on n vertices with girth at least 7.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 4, 3, 5, 4, 6, 5, 7, 7, 9, 9, 13, 12, 18, 16, 41, 21, 572, 28, 30402, 37, 1782884, 49, 95079141, 64, 4686063195, 84
Offset: 0

Views

Author

Jason Kimberley, Dec 12 2012

Keywords

Crossrefs

Not necessarily connected regular simple graphs with girth at least g: A005176 (g=3), A185314 (g=4), A185315 (g=5), A185316 (g=6), this sequence (g=7), A185318 (g=8), A185319 (g=9).

Formula

a(n) = A186727(n) + A185217(n).
Previous Showing 11-20 of 44 results. Next