cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 93 results. Next

A256360 Numbers that are multiple-digit narcissistic numbers in exactly one base.

Original entry on oeis.org

5, 8, 10, 13, 18, 20, 25, 26, 32, 35, 37, 40, 41, 43, 52, 53, 55, 58, 61, 62, 65, 68, 72, 80, 82, 83, 90, 92, 97, 98, 99, 101, 104, 109, 113, 117, 118, 122, 127, 128, 134, 146, 148, 152, 162, 170, 173, 178, 180, 181, 185, 190, 197, 205, 221, 225
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 26 2015

Keywords

Comments

See A258273 for the corresponding bases.

Examples

			a(1) = 5 because this is the first number that is a multiple-digit narcissistic number in exactly one base (3).
		

Crossrefs

Cf. A005188.
Cf. A256359 (every number of bases).
Cf. A256361, A256362, A256363, A256364, A256365 (2 to 6 bases).
Cf. A256459 (first occurrences).

Programs

  • PARI
    for(n=3, 1000000, k=0; for(z=2, n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L, x, j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1, j, t+=L[p]^j); if(n==t, k++)); if(k==1, print1(n, ", ")))

A010343 Base-4 Armstrong or narcissistic positive numbers.

Original entry on oeis.org

1, 2, 3, 130, 131, 203, 223, 313, 332, 1103, 3303
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A010344 (a(n) written in base 10).
In other bases: A010345 (base 5), A010347 (base 6), A010349 (base 7), A010351 (base 8), A010352 (base 9), A005188 (base 10).

Programs

Formula

a(n) = A007090(A010344(n)). - M. F. Hasler, Nov 18 2019

Extensions

Edited by Joseph Myers, Jun 28 2009
"Positive" added to definition. - N. J. A. Sloane, Nov 18 2019

A010345 Base-5 Armstrong or narcissistic numbers, written in base 5.

Original entry on oeis.org

1, 2, 3, 4, 23, 33, 103, 433, 2124, 2403, 3134, 124030, 124031, 242423, 434434444, 1143204434402, 14421440424444
Offset: 1

Views

Author

Keywords

Comments

Also called Perfect Digital Invariant (PDI). When a(n) ends in 0, then a(n+1) = a(n) + 1 is also in the sequence, but in this base this only happens once. Zero would also satisfy the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base-5 digits of n), like the other single-digit terms. - M. F. Hasler, Nov 18 2019
The property of being an Armstrong number is an arithmetic property (like the number of divisors function) and is usually restricted to positive numbers. - N. J. A. Sloane, Nov 29 2019

Crossrefs

Cf. A010346 (a(n) written in base 10).
In other bases: A010343 (base 4), A010347 (base 6), A010349 (base 7), A010351 (base 8), A010352 (base 9), A005188 (base 10).

Programs

Extensions

Edited by Joseph Myers, Jun 28 2009

A010347 Base-6 Armstrong or narcissistic numbers, written in base 6.

Original entry on oeis.org

1, 2, 3, 4, 5, 243, 514, 14340, 14341, 14432, 23520, 23521, 44405, 435152, 5435254, 12222215, 555435035, 1053025020422, 1053122514003, 1435403205450, 1435403205451, 1450005114454, 2135254510352, 2145555022413, 2500150125455, 133024510545125
Offset: 1

Views

Author

Keywords

Comments

From M. F. Hasler, Nov 18 2019: (Start)
Whenever a(n) ends in 0 (n = 8, 11, 20, 28), then a(n+1) = a(n) + 1 also satisfies the definition.
Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base 6 digits of n), but here only positive numbers are considered. (End)

Crossrefs

Cf. A010348 (a(n) written in base 10).
In other bases: A010343 (base 4), A010345 (base 5), A010349 (base 7), A010351 (base 8), A010352 (base 9), A005188 (base 10).

Programs

Extensions

Edited by Joseph Myers, Jun 28 2009

A010349 Base-7 Armstrong or narcissistic numbers, written in base 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 13, 34, 44, 63, 250, 251, 305, 505, 12205, 12252, 13350, 13351, 15124, 36034, 205145, 1424553, 1433554, 3126542, 4355653, 6515652, 125543055, 161340144, 254603255, 336133614, 542662326, 565264226, 13210652042, 13213641035, 13261421245, 23662020022, 52112660266
Offset: 1

Views

Author

Keywords

Comments

From M. F. Hasler, Nov 20 2019: (Start)
Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base 7 digits of n), but here only positive numbers are considered.
Whenever a(n) ends in zero (n = 11, 17, 22, 38, 57), then a(n+1) = a(n) + 1 is also a solution to the above equation. (End)

Crossrefs

Cf. A010350 (a(n) written in base 10).
In other bases: A010343 (base 4), A010345 (base 5), A010347 (base 6), A010351 (base 8), A010352 (base 9), A005188 (base 10).

Programs

Extensions

Edited by Joseph Myers, Jun 28 2009

A010351 Base-8 Armstrong or narcissistic numbers, written in base 8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 24, 64, 134, 205, 463, 660, 661, 40663, 42710, 42711, 60007, 62047, 636703, 3352072, 3352272, 3451473, 4217603, 7755336, 16450603, 63717005, 233173324, 3115653067, 4577203604, 61777450236, 147402312024
Offset: 1

Views

Author

Keywords

Comments

Whenever a term ends in 0, then a(n+1) = a(n) + 1 is also a term. Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k when d[1..k] are the base-8 digits of n), but here only positive numbers are considered. - M. F. Hasler, Nov 18 2019

Examples

			432 = 660_8 (= 6*8^2 + 6*8^1 + 0*8^0), and 6^3 + 6^3 + 0^3 = 432, therefore 660 is in the sequence. It's easy to see that 432 + 1 then also satisfies the equation, as for any term that is a multiple of 8. - _M. F. Hasler_, Nov 21 2019
		

Crossrefs

Cf. A010354 (a(n) written in base 10).
In other bases: A010343 (base 4), A010345 (base 5), A010347 (base 6), A010349 (base 7), A010352 (base 9), A005188 (base 10).

Programs

Extensions

Edited by Joseph Myers, Jun 28 2009

A010352 Base-9 Armstrong or narcissistic numbers, written in base 9.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 45, 55, 150, 151, 570, 571, 2446, 12036, 12336, 14462, 2225764, 6275850, 6275851, 12742452, 356614800, 356614801, 1033366170, 1033366171, 1455770342, 8463825582, 131057577510, 131057577511
Offset: 1

Views

Author

Keywords

Comments

From M. F. Hasler, Nov 18 2019: (Start)
Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k when d[1..k] are the base-9 digits of n), but here only positive numbers are considered.
Terms a(n+1) = a(n) + 1 (n = 11, 13, 20, 23, 25, 29, 33, 48, 51, 57) correspond to solutions a(n) that are multiples of 9, in which case a(n) + 1 is also a solution. (End)

Examples

			126 = 150_9 (= 1*9^2 + 5*9^1 + 0*9^0) = 1^3 + 5^3 + 0^3. It is easy to see that 126 + 1 then also satisfies this relation, as for all other terms that are multiples of 9. - _M. F. Hasler_, Nov 21 2019
		

Crossrefs

Cf. A010353 (a(n) written in base 10).
In other bases: A010343 (base 4), A010345 (base 5), A010347 (base 6), A010349 (base 7), A010351 (base 8), A005188 (base 10).

Programs

Extensions

Edited by Joseph Myers, Jun 28 2009

A256361 Numbers that are multiple-digit narcissistic numbers in exactly two bases.

Original entry on oeis.org

17, 28, 29, 45, 50, 85, 126, 133, 136, 145, 153, 160, 200, 245, 250, 260, 261, 265, 353, 365, 371, 405, 425, 442, 450, 490, 514, 520, 533, 585, 605, 650, 666, 680, 738, 800, 855, 925, 936, 1000, 1025, 1105, 1225, 1233, 1250, 1280
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 26 2015

Keywords

Examples

			a(1) = 17 because this is the first number that is a multiple-digit narcissistic number in exactly two bases (3 and 13).
		

Crossrefs

Cf. A005188.
Cf. A256359 (every number of bases).
Cf. A256360, A256362, A256363, A256364, A256365 (1, 3 to 6 bases).
Cf. A256459 (first occurrences).

Programs

  • PARI
    for(n=3, 1000000, k=0; for(z=2, n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L, x, j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1, j, t+=L[p]^j); if(n==t, k++)); if(k==2, print1(n, ", ")))

A256362 Numbers that are multiple-digit narcissistic numbers in exactly three bases.

Original entry on oeis.org

125, 325, 370, 793, 845, 1125, 1445, 2080, 2125, 2925, 3125, 3200, 3725, 3757, 5050, 5265, 6125, 6250, 6845, 7605, 8125, 8405, 10125, 10261, 10440, 10625, 11250, 13005, 13690, 14365, 15125, 15925, 18785, 22100
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 26 2015

Keywords

Examples

			a(1) = 125 because this is the first number that is a multiple-digit narcissistic number in exactly three bases (12, 23 and 57).
		

Crossrefs

Cf. A005188.
Cf. A256359 (every number of bases).
Cf. A256360, A256361, A256363, A256364, A256365 (1, 2, 4, 5 and 6 bases).
Cf. A256459 (first occurrences).

Programs

  • PARI
    for(n=3, 1000000, k=0; for(z=2, n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L, x, j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1, j, t+=L[p]^j); if(n==t, k++)); if(k==3, print1(n, ", ")))

A306360 Numbers k such that A101337(k)/k is an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 459, 1634, 8208, 9474, 13598, 48495, 54748, 92727, 93084, 119564, 174961, 306979, 548834, 1741725, 3194922, 4210818, 9800817, 9926315, 12720569, 24678050, 24678051, 88593477, 144688641, 146511208
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 10 2019

Keywords

Comments

A005188 is a subsequence of this sequence.
Sequence is finite. In particular, a(n) < 10^60. If k >= 10^60, then A101337(k) < k. - Chai Wah Wu, Feb 26 2019

Examples

			For k = 1, (1^1)/1 = 1;
for k = 459, (4^3 + 5^3 + 9^3) / 459 = 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], IntegerQ[Total[IntegerDigits[#]^IntegerLength[#]]/#] &] (* Michael De Vlieger, Aug 01 2019 *)
  • PARI
    isok(n) = frac(A101337(n)/n) == 0; \\ Michel Marcus, Feb 11 2019
    
  • PARI
    select( is(n)=!(A101337(n)%n), [0..999]) \\ M. F. Hasler, Nov 17 2019
    
  • Python
    A306360_list, k = [], 1
    while k < 10**9:
        s = str(k)
        l, c = len(s), 0
        for i in range(l):
            c = (c + int(s[i])**l) % k
        if c == 0:
            A306360_list.append(k)
        k += 1 # Chai Wah Wu, Feb 26 2019

Extensions

a(22)-a(37) from Daniel Suteu, Feb 10 2019
Previous Showing 31-40 of 93 results. Next