cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 93 results. Next

A256363 Numbers that are multiple-digit narcissistic numbers in exactly four bases.

Original entry on oeis.org

4901, 8450, 21125, 33125, 41405, 42050, 47125, 71825, 90625, 117325, 142805, 142885, 151250, 184093, 244205, 272000, 325125, 361250, 520625, 535717, 546325, 638450, 690625, 777925, 861125, 874225, 903125, 982125, 990125, 1035125, 1053405
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 26 2015

Keywords

Examples

			a(1) = 4901 because this is the first number that is a multiple-digit narcissistic number in exactly four bases (75, 99, 186 and 4831).
		

Crossrefs

Cf. A005188.
Cf. A256359 (every number of bases).
Cf. A256360, A256361, A256362, A256364, A256365 (1, 2, 3, 5 and 6 bases).
Cf. A256459 (first occurrences).

Programs

  • PARI
    for(n=3, 1000000, k=0; for(z=2, n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L, x, j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1, j, t+=L[p]^j); if(n==t, k++)); if(k==4, print1(n, ", ")))

A256364 Numbers that are multiple-digit narcissistic numbers in exactly five bases.

Original entry on oeis.org

274625, 465125, 528125, 710645, 912925, 983125
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 30 2015

Keywords

Examples

			a(1) = 274625 because this is the first number that is a multiple-digit narcissistic number in exactly five bases (528, 603, 1318, 1958 and 4217).
		

Crossrefs

Cf. A005188.
Cf. A256359 (every number of bases).
Cf. A256360, A256361, A256362, A256363, A256365 (1 to 4 and 6 bases).
Cf. A256459 (first occurrences).

Programs

  • PARI
    for(n=3, 1000000, k=0; for(z=2, n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L, x, j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1, j, t+=L[p]^j); if(n==t, k++)); if(k==5, print1(n, ", ")))

A256365 Numbers that are multiple-digit narcissistic numbers in exactly six bases.

Original entry on oeis.org

36125, 190125, 444925
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 30 2015

Keywords

Examples

			a(1) = 36125 because this is the first number that is a multiple-digit narcissistic number in exactly six bases (193, 212, 327, 423, 1057 and 7187).
		

Crossrefs

Cf. A005188.
Cf. A256359 (every number of bases).
Cf. A256360, A256361, A256362, A256363, A256364 (1 to 5 bases).
Cf. A256459 (first occurrences).

Programs

  • PARI
    for(n=3, 1000000, k=0; for(z=2, n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L, x, j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1, j, t+=L[p]^j); if(n==t, k++)); if(k==6, print1(n, ", ")))

A256459 Least number that is a multiple-digit narcissistic number in exactly n bases.

Original entry on oeis.org

5, 17, 125, 4901, 274625, 36125
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 30 2015

Keywords

Examples

			a(3) = 125 because this is the least number that is a multiple-digit narcissistic number in exactly three bases (12, 23 and 57).
		

Crossrefs

Cf. A005188.
Cf. A256359 (every number of bases).
Cf. A256360, A256361, A256362, A256363, A256364, A256365 (1 to 6 bases).

Programs

  • PARI
    b=0; until(b==6, b++; n=2; until(k==b, n++; k=0; for(z=2, n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L, x, j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1, j, t+=L[p]^j); if(n==t, k++)); if(k==b, print1(n, " "))))

A134703 Powerful numbers (2b): a sum of nonnegative powers of its digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 43, 63, 89, 132, 135, 153, 175, 209, 224, 226, 254, 258, 262, 263, 264, 267, 283, 308, 332, 333, 334, 347, 357, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 407, 445, 463, 472, 518, 538, 598, 629, 635, 653, 675, 730, 731, 732, 733, 734
Offset: 1

Views

Author

David W. Wilson, Sep 05 2009

Keywords

Comments

Here 0 digits may be used, with the convention that 0^0 = 1. Of course 0^1 = 0, so one is free to use the 0 digit to get an extra 1, or not.

Examples

			43 = 4^2 + 3^3; 254 = 2^7 + 5^3 + 4^0 = 128 + 125 + 1.
209 = 2^7 + 0^1 + 9^2.
732 = 7^0 + 3^6 + 2^1.
		

Crossrefs

Different from A007532 and A061862, which are variations.

Formula

If n = d_1 d_2 ... d_k in decimal then there are integers m_1 m_2 ... m_k >= 0 such that n = d_1^m_1 + ... + d_k^m_k.

A281858 Curious cubic identities based on the Armstrong number 370.

Original entry on oeis.org

370, 336700, 333667000, 333366670000, 333336666700000, 333333666667000000, 333333366666670000000, 333333336666666700000000, 333333333666666667000000000, 333333333366666666670000000000, 333333333336666666666700000000000, 333333333333666666666667000000000000
Offset: 1

Views

Author

Wolfdieter Lang, Feb 08 2017

Keywords

Comments

See a comment in A067275, and the analog to the Armstrong number 153 = A005188(10) treated in A281857, 370 = A005188(11).

Examples

			n=1: 370 =  3^3 + 7^3 + 0^3; n=2: 336700 = 33^3 + 67^3 + (00)^3; n=3: 333667000 = 333^3 + 667^3 + (000)^3.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ Join[ConstantArray[3, n], ReplacePart[ConstantArray[6, n], -1 -> 7], ConstantArray[0, n]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    Vec(10*x*(37 - 7400*x + 100000*x^2) / ((1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 08 2017

Formula

a(n) = A002277(n)^3 + A067275(n+1)^3 + 0(n)^3, n >= 1, with 0(n) standing for n 0's.
From Colin Barker, Feb 08 2017: (Start)
G.f.: 10*x*(37 - 7400*x + 100000*x^2) / ((1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = 10^n*(1 + 10^n + 100^n) / 3.
a(n) = 1110*a(n-1) - 111000*a(n-2) + 1000000*a(n-3) for n>3. (End)

A157714 Base-10 pseudo-altruistic numbers.

Original entry on oeis.org

136, 160, 217, 244, 259, 352, 496, 586, 664, 736, 853, 862, 1009, 2178, 2929, 3233, 3283, 4274, 4394, 6514, 6562, 7154, 10933, 13154, 18829, 50062, 58618, 59536, 73318, 76438, 124618, 282595, 312962, 329340, 376761, 537059, 578955, 681069
Offset: 1

Views

Author

Hans Havermann, Mar 04 2009

Keywords

Comments

These integers reoccur (with a period greater than 1) upon the iteration of raising every digit to the power of the number's length and summing.
If the reoccurrence is immediate (period 1), the numbers are (instead) narcissistic (A005188).

Examples

			2929 is pseudo-altruistic because 2929 -> 13154 (2^4 + 9^4 + 2^4 + 9^4) -> 4394 (1^5 + 3^5 + 1^5 + 5^5 + 4^5) -> 7154 (4^4 + 3^4 + 9^4 + 4^4) -> 3283 (7^4 + 1^4 + 5^4 + 4^4) -> 4274 (3^4 + 2^4 + 8^4 + 3^4) -> 2929 (4^4 + 2^4 + 7^4 + 4^4).
		

Crossrefs

Cf. A005188. The "Recurring Digital Invariant Variant" is described in more detail in A151543.

A261433 k-digit integers equal to the sum of the k-th powers of the tens' complements of their digits.

Original entry on oeis.org

5, 378, 91882, 3762938, 46478818, 564426414
Offset: 1

Views

Author

Paolo P. Lava, Aug 20 2015

Keywords

Comments

The terms of the sequence could be called "Shy n n-digit numbers" as suggested by Geoffrey Campbell, Long Term Visitor (Visiting Fellow), Mathematical Sciences Institute, Australian National University, cf Links.
In base 10, x is a "Shy k n-digit number" if it is an n-digit (d_i) number such that x = Sum_{i=1..n}{(10-d_i)^k}. For instance, 2240 is a "Shy 3 4-digit number": (10 - 2)^3 + (10 - 2)^3 + (10 - 4)^3 + (10 - 0)^3 = 512 + 512 + 216 + 1000 = 2240. Again, 2149042 is a "Shy 6 7-digit number": (10 - 2)^6 + (10 - 1)^6 + (10 - 4)^6 + (10 - 9)^6 + (10 - 0)^6 + (10 - 4)^6 + (10 - 2)^6 = 262144 + 531441 + 46656 + 1 + 1000000 + 46656 + 262144 = 2149042.
It is not known if the sequence is finite. At least there are no other terms up to 18-digit numbers (as tested by Marco Cecchi at LinkedIn link).
If there are further terms, they are greater than 10^33. - Giovanni Resta, Aug 20 2015
Subsequence of A052382. Sequence is finite and complete as verified by exhaustive search since all terms have 60 or fewer digits. Since all terms are zeroless, they are less than k*9^k which would be less than 10^(k-1) (i.e., have fewer than k digits) if k > 60. - Chai Wah Wu, Apr 07 2018

Examples

			(10 - 5)^1 = 5,
(10 - 3)^3 + (10 - 7)^3 + (10 - 8)^3 = 343 + 27 + 8 = 378,
(10 - 9)^5 + (10 - 1)^5 + (10 - 8)^5 + (10 - 8)^5 + (10 - 2)^5 = 1 + 59049 + 32 + 32 + 32768 = 91882, etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n;
    for n from 1 to q do a:=ilog10(n)+1; b:=0; c:=n;
    for k from 1 to a do b:=b+(10-(c mod 10))^a; c:=trunc(c/10); od;
    if b=n then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range[10^5], # == Total[(10 - IntegerDigits@ #)^ IntegerLength[#]] &] (* Giovanni Resta, Aug 20 2015 *)
  • PARI
    isok(n) = (d = digits(n)) && (sum(k=1, #d, (10-d[k])^#d) == n); \\ Michel Marcus, Aug 24 2015
    
  • Python
    from itertools import combinations_with_replacement
    A261433_list = []
    for k in range(1,10):
        a, k10 = tuple([i**k for i in range(10,0,-1)]), 10**k
        for b in combinations_with_replacement(range(1,10),k):
            x = sum(list(map(lambda y:a[y],b)))
            if x < k10 and tuple(int(d) for d in sorted(str(x))) == b:
                A261433_list.append(x)
    A261433_list = sorted(A261433_list) # Chai Wah Wu, Aug 25 2015, updated Apr 06, 2018

Extensions

a(4)-a(6) found by Aleksander Zujev

A281857 Numbers occurring in a curious cubic identity.

Original entry on oeis.org

153, 165033, 166500333, 166650003333, 166665000033333, 166666500000333333, 166666650000003333333, 166666665000000033333333, 166666666500000000333333333, 166666666650000000003333333333, 166666666665000000000033333333333, 166666666666500000000000333333333333
Offset: 1

Views

Author

Wolfdieter Lang, Feb 07 2017

Keywords

Comments

See A246057 for the van der Poorten et al. reference and a comment.
153 is the Armstrong number A005188(10). [Typo corrected by Jeremy Tan, Feb 25 2023]

Examples

			1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ...
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ Join[ReplacePart[ConstantArray[6, n], 1 -> 1], ReplacePart[ConstantArray[0, n], 1 -> 5], ConstantArray[3, n]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    Vec(9*x*(17 - 550*x + 33500*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^15)) \\ Colin Barker, Feb 08 2017
    
  • PARI
    a(n) = (((10^n - 4)/6)^3) + ((10^n/2)^3) + (((10^n - 1)/3)^3) \\ Jean-Jacques Vaudroz, Aug 11 2024

Formula

a(n) = A246057(n-1)^3 + A093143(n)^3 + A002277(n)^3, n >= 1.
From Colin Barker, Feb 08 2017: (Start)
G.f.: 9*x*(17 - 550*x + 33500*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = (-2 + 2^(1+n)*5^n - 100^n + 1000^n) / 6.
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4. (End)

A056733 Each number is the sum of the cubes of its 3 sections.

Original entry on oeis.org

153, 370, 371, 407, 165033, 221859, 336700, 336701, 340067, 341067, 407000, 407001, 444664, 487215, 982827, 983221, 166500333, 296584415, 333667000, 333667001, 334000667, 710656413, 828538472, 142051701000, 166650003333, 262662141664, 333366670000
Offset: 1

Views

Author

Carlos Rivera, Aug 13 2000

Keywords

Comments

The first four terms are also called Narcissistic or Armstrong numbers. The first 16 terms are found in Spencer's book, pages 65 and 101.
The sequence contains several infinite subsequences such as 153, 165033, 166500333, 166650003333, ...; 370, 336700, 333667000, 333366670000, ... or 371, 336701, 333667001, 333366670001, ... - Ulrich Schimke (ulrschimke(AT)aol.com), Jun 08 2001
From Daniel Forgues, Jan 30 2015: (Start)
The subsequence {153, 165033, 166500333, ...} consists of numbers of the form
[(10^n - 4) / 6] * (10^n)^2 + [(10^n) / 2] * (10^n)^1 +
[(10^n - 1) / 3] * (10^n)^0 =
[(10^n - 4) / 6]^3 + [(10^n) / 2]^3 + [(10^n - 1) / 3]^3, n >= 1,
thus equal to the sum of the cube of their "digits" in base 10^n.
The subsequence {370, 336700, 333667000, ...} consists of numbers of the form
[(10^n - 1) / 3] * (10^n)^2 + {10^n - [(10^n - 1) / 3]} * (10^n)^1 =
[(10^n - 1) / 3]^3 + {10^n - [(10^n - 1) / 3]}^3, n >= 1,
thus equal to the sum of their "digits" in base 10^n.
The subsequence {371, 336701, 333667001, ...} is trivially derived from the subsequence {370, 336700, 333667000, ...}, since 1^3 = 1.
The subsequence {407, 340067, 334000667, ...} consists of numbers of the form
{10^n - 2 * [(10^n - 1) / 3]} * (10^n)^2 +
{10^n - [(10^n - 1) / 3]} * (10^n)^0 =
{10^n - 2 * [(10^n - 1) / 3]}^3 + {10^n - [(10^n - 1) / 3]}^3, n >= 1,
thus equal to the sum of their "digits" in base 10^n.
"There are just four numbers (after 1) which are the sums of the cubes of their digits, viz. 153 = 1^3 + 5^3 + 3^3, 370 = 3^3 + 7^3 + 0^3, 371 = 3^3 + 7^3 + 1^3, and 407 = 4^3 + 0^3 + 7^3. This is an odd fact, very suitable for puzzle columns and likely to amuse amateurs, but there is nothing in it which appeals much to a mathematician. The proof is neither difficult nor interesting--merely a little tiresome. The theorem is not serious; and it is plain that one reason (though perhaps not the most important) is the extreme speciality of both the enunciation and the proof, which is not capable of any significant generalization." -- G. H. Hardy, "A Mathematician’s Apology" (End)
From Daniel Forgues, Feb 04 2015: (Start)
The subsequence {341067, 333401006667, 333334001000666667, ...} is trivially derived from the even-indexed terms 2n, n >= 1, of the subsequence {407, 340067, 334000667, 333400006667, ...}, since (10^n)^3 = 10^n * 10^(2n). These numbers are equal to the sum of the cube of their "digits" in base 10^(2n), n >= 1.
The number 407000 is trivially derived from 407, since 40^3 + 70^3 =
(4 * 10)^3 + (7 * 10)^3 = (4^3 + 7^3) * 10^3 = 407 * 1000 = 407000.
The number 407001 is trivially derived from 407000, since 1^3 = 1. (End)
From Jose M. Arenas, Mar 08 2017: (Start)
The subsequence {340067000000, 334000667000000000, 333400006667000000000000, ...} consists of numbers of the form
(4 * 10^(n + 2) + ((10^(n + 1) - 1) / 3) * 10^(n + 3)) * 10^(4 * n + 8) +
(7 * 10^(n + 2) + (2 * (10^(n + 1) - 1) / 3) * 10^(n + 3)) * 10^(2 * n + 4) =
(4 * 10^(n + 2) + ((10^(n + 1) - 1) / 3) * 10^(n + 3))^3 +
(7 * 10^(n + 2) + (2 * (10^(n + 1) - 1) / 3) * 10^(n + 3))^3, n >= 0,
thus equal to the sum of their 3 sections, each section of (2 * n + 4) digits.
The subsequence {340067000001, 334000667000000001, 333400006667000000000001, ...} is trivially derived from the subsequence {340067000000, 334000667000000000, 333400006667000000000000, ...}, since 1^3 = 1. (End)

Examples

			333667001 = 333^3 + 667^3 + 001^3, so 333667001 is a term.
		

References

  • J. S. Madachy, Madachy's Mathematical Recreations, pp. 166, Dover, NY, 1979.
  • Donald D. Spencer, "Exploring number theory with microcomputers", pp. 65 and 101, Camelot Publishing Co.

Crossrefs

Cf. A005188.
See A271730 for a related sequence.

Programs

  • Mathematica
    f[n_] := Block[{len = IntegerLength@ n}, If[IntegerQ[len/3], n == Plus @@ Flatten[(FromDigits /@ Partition[IntegerDigits@ n, len/3])^3], False]]; Select[Range[10^6], f] (* Michael De Vlieger, Jan 31 2015 *)
  • Python
    def a():
      n = 1
      while n < 10**9:
        st = str(n)
        if len(st) % 3 == 0:
          s1 = st[:int(len(st)/3)]
          s2 = st[int(len(st)/3):int(2*len(st)/3)]
          s3 = st[int(2*len(st)/3):int(len(st))]
          if int(s1)**3+int(s2)**3+int(s3)**3 == int(st):
            print(n, end=', ')
            n += 1
          else:
            n += 1
        else:
          n = 10*n
    a()
    # Derek Orr, Jul 03 2014
    
  • Python
    def a():
      for i in range(1,10):
        for j in range(10):
          for k in range(10):
            if i**3 + j**3 + k**3 == i*100 + j*10 + k:
              print(i*100 + j*10 + k)
      for i in range(10,100):
        for j in range(100):
          for k in range(100):
            if i**3 + j**3 + k**3 == i*10000 + j*100 + k:
              print(i*10000 + j*100 + k)
      for i in range(100,1000):
        for j in range(1000):
          for k in range(1000):
            if i**3 + j**3 + k**3 == i*1000000 + j*1000 + k:
              print(i*1000000 + j*1000 + k)
    a()
    # Denys Contant, Feb 23 2017

Extensions

Offset changed to 1 by N. J. A. Sloane, Jul 07 2014
a(24)-a(27) from Jose M. Arenas, Mar 08 2017
Previous Showing 41-50 of 93 results. Next