cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A171666 Numbers n such that n, n+1 and n+2 have the same number of divisors, and that number of divisors is larger than 4.

Original entry on oeis.org

230, 242, 243, 374, 603, 663, 902, 1105, 1274, 1309, 1334, 1832, 1885, 1924, 2013, 2054, 2133, 2264, 2343, 2504, 2523, 2665, 2696, 2936, 3110, 3655, 3656, 3729, 4203, 4401, 4503, 4504, 4614, 4669, 4695, 4807, 4923, 5133, 5862, 5943, 5944, 6054, 6061
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A347603 Numbers k such that tau(k) = 2*tau(k-1) and sigma(k) = sigma(k-1), where tau(k) and sigma(k) are respectively the number and sum functions of the divisors of k.

Original entry on oeis.org

4365, 74919, 79827, 111507, 347739, 445875, 739557, 2168907, 4481986, 7263945, 7845387, 9309465, 10838247, 12290055, 12673095, 18151479, 22083215, 25645707, 39175955, 62634519, 69076995, 72794967, 80889207, 81166839, 87215967, 94682133, 107522943, 110768835, 119192283
Offset: 1

Views

Author

Claude H. R. Dequatre, Sep 08 2021

Keywords

Comments

Conjecture: the asymptotic density of terms is equal to 0 and this sequence is infinite.

Examples

			a(1) = 4365 because the divisors of 4365 are: 1, 3, 5, 9, 15, 45, 97, 291, 485, 873, 1455, 4365; so, tau(4365) = 12 and sigma(4365) = 7644. The divisors of 4364 are: 1, 2, 4, 1091, 2182, 4364; so, tau(4364) = 6 and sigma(4364) = 7644. Thus tau(4365) = 2*tau(4364), sigma(4365) = sigma(4364) and so 4365 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 10^6], DivisorSigma[0, #] == 2*DivisorSigma[0, # - 1] && DivisorSigma[1, #] == DivisorSigma[1, # - 1] &] (* Amiram Eldar, Sep 08 2021 *)
  • PARI
    for(k=2,100000000,if(numdiv(k)==2*numdiv(k-1) && sigma(k)==sigma(k-1),print1(k", ")))
    
  • Python
    from sympy import divisor_count as tau, divisor_sigma as sigma
    print([k for k in range(2, 10**6) if tau(k) == 2*tau(k-1) and sigma(k) == sigma(k-1)]) # Karl-Heinz Hofmann, Jan 15 2022

A355711 Starts of runs of 3 consecutive numbers with the same number of 5-smooth divisors.

Original entry on oeis.org

33, 85, 93, 145, 213, 265, 393, 445, 453, 475, 505, 633, 685, 753, 805, 813, 865, 933, 985, 993, 1045, 1113, 1165, 1293, 1345, 1353, 1405, 1430, 1533, 1585, 1624, 1653, 1705, 1713, 1765, 1833, 1885, 1893, 1945, 2013, 2065, 2193, 2245, 2253, 2275, 2305, 2433, 2485
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355583(k) = A355583(k+1) = A355583(k+2).

Examples

			33 is a term since A355583(33) = A355583(34) = A355583(35) = 2.
		

Crossrefs

Cf. A355583.
Subsequence of A355710.
A355712 is a subsequence.
Similar sequences: A005238, A006073, A045939, A332313, A332387.

Programs

  • Mathematica
    f[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); s = {}; m = 3; fs = f /@ Range[m]; Do[If[Equal @@ fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 2500}]; s
  • PARI
    s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1);
    s1 = s(1); s2 = s(2); for(k = 3, 2500, s3 = s(k); if(s1 == s2 && s2 == s3, print1(k-2,", ")); s1 = s2; s2 = s3);

A171668 Fibonacci numbers sandwiched between two numbers having same number of divisors.

Original entry on oeis.org

34, 55, 144, 10946, 46368, 196418, 9227465, 1134903170, 4052739537881, 117669030460994, 420196140727489673, 12200160415121876738, 3928413764606871165730, 22698374052006863956975682, 68330027629092351019822533679447, 13598018856492162040239554477268290
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length[Divisors[n]]; lst={};Do[fi=Fibonacci[n];If[f[fi-1]==f[fi+1],AppendTo[lst,fi]],{n,170}];lst

Extensions

a(15)-a(16) from Amiram Eldar, Aug 08 2024

A333056 Numbers k such that k, k+1 and k+2 have different prime signatures and d(k) = d(k+1) = d(k+2), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

59318, 72063, 72224, 184190, 185192, 215648, 300320, 355454, 362624, 384128, 548936, 550016, 640790, 682624, 707966, 723896, 758888, 828872, 828873, 858494, 860030, 888704, 901503, 963486, 963710, 993375, 1039742, 1039743, 1081214, 1248776, 1261897, 1340630
Offset: 1

Views

Author

Amiram Eldar, Mar 06 2020

Keywords

Comments

Apparently most of the numbers k such that d(k) = d(k+1) = d(k+2) (A005238) are terms of A052214, i.e., k, k+1 and k+2 have the same prime signature.
Of the first 10000 terms of A005238, 6406 are also in A052214, 3578 have a pair (k and k+1, k and k+2, or k+1 and k+2) with the same prime signature, and only 16 are in this sequence.

Examples

			59318 is a term since d(59318) = d(59319) = d(59320) = 16, and the prime signatures of these 3 numbers are different: 59318 = 2 * 7 * 19 * 223, 59319 = 3^3 * 13^3, and 59320 = 2^3 * 5 * 1483 have 3 different ordered prime signatures (A124010): [1, 1, 1, 1], [3, 3], and [1, 1, 3].
		

Crossrefs

Subsequence of A005238.

Programs

  • Mathematica
    psig[n_] := Sort @ FactorInteger[n][[;; , 2]]; d[sig_] := Times @@ (sig + 1); vsig = psig /@ Range[2, 4]; seqQ[v_] := Length@Union[v] == 3 && Length @ Union[d /@ v] == 1; seq = {}; Do[If[seqQ[vsig], AppendTo[seq, n - 3]]; vsig = Join[Rest[vsig], {psig[n]}], {n, 5, 10^6}]; seq

A171669 Pell numbers sandwiched between two numbers having same number of divisors.

Original entry on oeis.org

12, 5741, 2744210, 15994428, 21300003689580, 723573111879672, 1111984844349868137938112, 293199986221627877463941823267862, 9960168529794442859224531878561050, 27749033099085295754434173207717704165, 66992092050551637663438906713182313772
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length[Divisors[n]]; a=1;b=0;c=0;lst={};Do[c=a+b+c;If[f[c-1]==f[c+1],AppendTo[lst,c]];a=b;b=c,{n,80}];lst

Extensions

a(8)-a(11) from Amiram Eldar, Aug 08 2024

A356766 Least number k such that k and k+2 both have exactly 2n divisors, or -1 if no such number exists.

Original entry on oeis.org

3, 6, 18, 40, 127251, 198, 26890623, 918, 17298, 6640, 25269208984375, 3400, 3900566650390623, 640062, 8418573, 18088, 1164385682220458984373, 41650, 69528379848480224609373, 128464, 34084859373, 12164094, 150509919493198394775390625, 90270, 418514293125, 64505245696
Offset: 1

Views

Author

Jean-Marc Rebert, Aug 26 2022

Keywords

Examples

			For n=1, numdiv(3) = numdiv(5) = 2 = 2*1, and no number < 3 satisfies this, hence a(1) = 3.
		

Crossrefs

Numbers k such that k and k+2 both have exactly m divisors: A001359 (m=2), A356742 (m=4), A356743 (m=6), A356744 (m=8).

Programs

Extensions

More terms from Jinyuan Wang, Aug 28 2022
Previous Showing 21-27 of 27 results.