A006755
The generalized Conway-Guy sequence w^{1}.
Original entry on oeis.org
0, 2, 3, 4, 8, 14, 25, 47, 86, 164, 314, 603, 1159, 2271, 4456, 8748, 17182, 33761, 66919, 132679, 263087
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A006756
The generalized Conway-Guy sequence w^{2}.
Original entry on oeis.org
0, 4, 5, 6, 8, 16, 27, 49, 92, 168, 320, 613, 1177, 2262, 4432, 8696, 17072, 33531, 65885, 130593, 258924
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A006757
The generalized Conway-Guy sequence w^{3}.
Original entry on oeis.org
0, 8, 10, 11, 12, 16, 32, 54, 97, 183, 334, 636, 1218, 2339, 4495, 8807, 17280, 33924, 66630, 130921, 259503
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A195683
The generalized Conway-Guy sequence w^{4}.
Original entry on oeis.org
0, 16, 20, 21, 22, 24, 32, 64, 107, 193, 364, 664, 1264, 2421, 4649, 8934, 17504, 34344, 67424, 132427, 260205
Offset: 0
A195684
The generalized Conway-Guy sequence w^{-6}.
Original entry on oeis.org
0, 5, 9, 10, 11, 18, 31, 57, 104, 192, 366, 701, 1353, 2649, 5194, 10196, 20026, 39686, 79006, 157316, 313279
Offset: 0
A037254
Triangle read by rows: T(n,k) (n >= 1, 1 <= k< = n) gives number of non-distorting tie-avoiding integer vote weights.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 3, 5, 6, 7, 6, 9, 11, 12, 13, 11, 17, 20, 22, 23, 24, 22, 33, 39, 42, 44, 45, 46, 42, 64, 75, 81, 84, 86, 87, 88, 84, 126, 148, 159, 165, 168, 170, 171, 172, 165, 249, 291, 313, 324, 330, 333, 335, 336, 337, 330, 495, 579, 621, 643, 654, 660, 663, 665
Offset: 1
Triangle:
1;
1, 2;
2, 3, 4;
3, 5, 6, 7;
6, 9, 11, 12, 13;
...
- Author?, Solution to Board of Directors Problem, J. Rec. Math., 9 (No. 3, 1977), 240.
- T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
- M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 122-123.
- G. Kreweras, Sur quelques problèmes relatifs au vote pondéré, [Some problems of weighted voting], Math. Sci. Humaines No. 84 (1983), 45-63.
- B. E. Wynne & N. J. A. Sloane, Correspondence, 1976-84
- B. E. Wynne & T. V. Narayana, Tournament configuration, weighted voting, and partitioned catalans, Preprint.
- Bayard Edmund Wynne, and T. V. Narayana, Tournament configuration and weighted voting, Cahiers du bureau universitaire de recherche opérationnelle, 36 (1981): 75-78.
- Solution to Board of Directors Problem, J. Rec. Math., 9 (No. 3, 1977), 240. (Annotated scanned copy)
-
a037254 n k = a037254_tabl !! (n-1) !! (k-1)
a037254_row n = a037254_tabl !! (n-1)
a037254_tabl = map fst $ iterate f ([1], drop 2 a002083_list) where
f (row, (x:xs)) = (map (+ x) (0 : row), xs)
-- Reinhard Zumkeller, Nov 18 2012
-
a[1, 1] = 1; a[n_, 1] := a[n, 1] = a[n - 1, Floor[(n + 1)/2]]; a[n_, k_ /; k > 1] := a[n, k] = a[n, 1] + a[n - 1, k - 1]; A037254 = Flatten[ Table[ a[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Apr 03 2012, after given recurrence *)
-
def T(n, k):
if k==1:
if n==1: return 1
else: return T(n - 1, (n + 1)//2)
return T(n, 1) + T(n - 1, k - 1)
for n in range(1, 12): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 03 2017
More terms from (and formula corrected by)
James Sellers, Feb 04 2000
A201052
a(n) is the maximal number c of integers that can be chosen from {1,2,...,n} so that all 2^c subsets have distinct sums.
Original entry on oeis.org
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8
Offset: 1
Numbers n and an example of a subset of {1..n} exhibiting the maximum cardinality c=a(n):
1, {1}
2, {1, 2}
3, {1, 2}
4, {1, 2, 4}
5, {1, 2, 4}
6, {1, 2, 4}
7, {3, 5, 6, 7}
8, {1, 2, 4, 8}
9, {1, 2, 4, 8}
10, {1, 2, 4, 8}
11, {1, 2, 4, 8}
12, {1, 2, 4, 8}
13, {3, 6, 11, 12, 13}
14, {1, 6, 10, 12, 14}
15, {1, 6, 10, 12, 14}
16, {1, 2, 4, 8, 16}
17, {1, 2, 4, 8, 16}
18, {1, 2, 4, 8, 16}
For examples of maximum-cardinality subsets at values of n where a(n) > a(n-1), see A096858. - _Jon E. Schoenfield_, Nov 28 2013
-
# is any subset of L uniquely determined by its total weight?
iswts := proc(L)
local wtset,s,c,subL,thiswt ;
# the weight sums are to be unique, so sufficient to remember the set
wtset := {} ;
# loop over all subsets of weights generated by L
for s from 1 to nops(L) do
c := combinat[choose](L,s) ;
for subL in c do
# compute the weight sum in this subset
thiswt := add(i,i=subL) ;
# if this weight sum already appeared: not a candidate
if thiswt in wtset then
return false;
else
wtset := wtset union {thiswt} ;
end if;
end do:
end do:
# All different subset weights were different: success
return true;
end proc:
# main sequence: given grams 1 to n, determine a subset L
# such that each subset of this subset has a different sum.
wts := proc(n)
local s,c,L ;
# select sizes from n (largest size first) down to 1,
# so the largest is detected first as required by the puzzle.
for s from n to 1 by -1 do
# all combinations of subsets of s different grams
c := combinat[choose]([seq(i,i=1..n)],s) ;
for L in c do
# check if any of these meets the requir, print if yes
# and return
if iswts(L) then
print(n,L) ;
return nops(L) ;
end if;
end do:
end do:
print(n,"-") ;
end proc:
# loop for weights with maximum n
for n from 1 do
wts(n) ;
end do: # R. J. Mathar, Aug 24 2010
A096796
a(n) = n for n <= 2; for n > 2, a(n) = 2a(n-1) - a(n - floor( 1/2 + sqrt(2n) )).
Original entry on oeis.org
0, 1, 2, 3, 5, 8, 13, 23, 41, 74, 135, 257, 491, 941, 1808, 3481, 6827, 13397, 26303, 51665, 101522, 199563, 395645, 784463, 1555529, 3084755, 6117845, 12134168, 24068773, 47937983, 95480321, 190176179, 378796829, 754508903, 1502899961
Offset: 0
-
a096796 n = a096796_list !! n
a096796_list = 0 : 1 : zipWith (-)
(map (* 2) $ tail a096796_list) (map a096796 $ tail a083920_list)
-- Reinhard Zumkeller, Feb 12 2012
-
a[n_] := a[n] = If[n < 3, a[n] = n, 2a[n - 1] - a[n - Floor[1/2 + Sqrt[2n]] ]]; Table[ a[n], {n, 0, 35}] (* Robert G. Wilson v *)
-
{m=35;v=vector(m+1);for(n=0,m,if(n<=2,a=n,k=n-floor(1/2+sqrt(2*n));a=2*v[n]-v[k+1]);v[n+1]=a;print1(a,","))} \\ Klaus Brockhaus, Aug 20 2004
A096824
a(n) = n for n <= 2; for n > 2, a(n) = 2a(n-1) - a(n - floor(1/2 + sqrt(2(n-1)))).
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 9, 14, 24, 42, 75, 136, 258, 492, 942, 1809, 3482, 6828, 13398, 26304, 51666, 101523, 199564, 395646, 784464, 1555530, 3084756, 6117846, 12134169, 24068774, 47937984, 95480322, 190176180, 378796830, 754508904, 1502899962
Offset: 0
-
a096824 n = a096824_list !! n
a096824_list = 0 : 1 : 2 : zipWith (-)
(map (* 2) $ drop 2 a096824_list) (map a096824 $ tail a122797_list)
-- Reinhard Zumkeller, Feb 12 2012
-
a[n_] := a[n] = If[n < 3, a[n] = n, 2a[n - 1] - a[n - Floor[1/2 + Sqrt[2(n - 1)]]]]; Table[ a[n], {n, 0, 35}] (* Robert G. Wilson v, Aug 20 2004 *)
-
{m=36;v=vector(m+1);for(n=0,m,if(n<=2,a=n,k=n-floor(1/2+sqrt(2*(n-1)));a=2*v[n]-v[k+1]);v[n+1]=a;print1(a,","))} \\ Klaus Brockhaus, Aug 20 2004
A349777
Lexicographically first sequence of positive integers such that all disjoint equivalent sets of K terms have distinct sums for 1 <= K <= 4.
Original entry on oeis.org
1, 2, 3, 5, 8, 14, 25, 45, 85, 162, 310, 595, 1107, 2052, 3515, 5925, 9798, 16169, 23295, 34303, 53259, 72215, 112624, 153552, 198523, 283570, 370114, 497383, 700022, 840817, 1145415, 1398434, 1717972, 2279969, 2819186, 3436864, 4299205, 5239007, 6335442, 7650495, 9219214
Offset: 1
-
a={};k=1;Do[While[(t=1;While[t<=4&&DuplicateFreeQ[Total/@Subsets[Join[a,{k}],{t}]],t++];t)<=4,k++];AppendTo[a,k];Print@k,30] (* Giorgos Kalogeropoulos, Dec 02 2021 *)
-
# See links.
Comments