cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A092795 Number of connected relations.

Original entry on oeis.org

1, 67, 1993, 43891, 836521, 14764627, 249723433, 4123297651, 67157947561, 1085384064787, 17464790421673, 280328391247411, 4493290901135401, 71964955947764947, 1152089156508284713, 18439265231953981171, 295080697103288816041, 4721762414918959913107
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Magma
    [16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n: n in [1..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
    LinearRecurrence[{43,-701,5477,-20658,30240},{1,67,1993,43891,836521},20] (* Harvey P. Dale, May 24 2025 *)
  • PARI
    for(n=1,50, print1(16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = 16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n.
G.f.: x*(318*x^3+187*x^2-24*x-1) / ((5*x-1)*(6*x-1)*(7*x-1)*(9*x-1)*(16*x-1)). - Colin Barker, Jul 13 2013

Extensions

More terms from Colin Barker, Jul 13 2013

A092796 Number of connected relations.

Original entry on oeis.org

1, 213, 14857, 694485, 27005881, 957263493, 32333393737, 1064686990965, 34589700409561, 1115777278022373, 35856732186282217, 1149998292486777045, 36843831022923582841, 1179748027215029366853, 37764598757179830172297, 1208682260675932309564725
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Magma
    [32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1(32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = 32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n.
G.f.: -x*(132960*x^5 + 145292*x^4 - 17528*x^3 - 1227*x^2 + 122*x + 1) / ((6*x-1)*(7*x-1)*(8*x-1)*(10*x-1)*(11*x-1)*(17*x-1)*(32*x-1)). - Colin Barker, Jul 13 2013

Extensions

Additional term from Colin Barker, Jul 13 2013

A092797 Number of connected relations.

Original entry on oeis.org

1, 667, 108817, 10796275, 858251401, 61283936827, 4147211888737, 273109341611395, 17736960725057401, 1143745441025278987, 73483870162431314257, 4712360023676936085715, 301901195708380781658601, 19331914197940256185117147, 1237580377249840094294765377
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Magma
    [64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n  + 30*10^n - 270*9^n + 360*8^n - 120*7^n: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n  + 30*10^n - 270*9^n + 360*8^n - 120*7^n, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1(64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n  + 30*10^n - 270*9^n + 360*8^n - 120*7^n, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = 64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n + 30*10^n - 270*9^n + 360*8^n - 120*7^n.
G.f.: x*(54888451200*x^9 +55706052240*x^8 -14450714964*x^7 -624924*x^6 +247511131*x^5 -22659769*x^4 +564934*x^3 +10694*x^2 -461*x -1) / ((7*x -1)*(8*x -1)*(9*x -1)*(10*x -1)*(11*x -1)*(12*x -1)*(15*x -1)*(18*x -1)*(19*x -1)*(33*x -1)*(64*x -1)). - Colin Barker, Jul 13 2013

Extensions

More terms from Colin Barker, Jul 13 2013

A255192 Triangle of number of connected subgraphs of K(n,n) with m edges.

Original entry on oeis.org

1, 4, 1, 81, 78, 36, 9, 1, 4096, 8424, 9552, 7464, 4272, 1812, 560, 120, 16, 1, 390625, 1359640, 2696200, 3880300, 4394600, 4059000, 3111140, 1994150, 1070150, 478800, 176900, 53120, 12650, 2300, 300, 25, 1, 60466176, 314452800, 939988800, 2075760000
Offset: 1

Views

Author

Thomas Dybdahl Ahle, Feb 16 2015

Keywords

Comments

m ranges from 2n-1 to n^2.
First column is A068087.

Examples

			Triangle begins:
----|------------------------------------------------------------
n\m |  1 2 3 4  5  6    7    8    9   10   11   12  13  14 15 16
----|------------------------------------------------------------
1   |  1
2   |  - - 4 1
3   |  - - - - 81 78   36    9    1
4   |  - - - -  -  - 4096 8424 9552 7464 4272 1812 560 120 16  1
		

Crossrefs

Cf. A005333 (row sums?).

Programs

  • Python
    from math import comb as binomial
    def f(x, a, b, k):
        if b == k == 0:
            return 1
        if b == 0 or k == 0:
            return 0
        if x == a:
            return sum(binomial(a, n) * f(x, x, b - 1, k - n) for n in range(1, a + 1))
        return sum(binomial(b, n) * f(x, x, n, k2) * f(n, b, a - x, k - k2)
            for n in range(1, b + 1) for k2 in range(0, k + 1) )
    def a(n, m):
        return f(1, n, n, m)
    for n in range(1, 5):
        print([a(n, m) for m in range(1, n * n + 1)])

Formula

Sum(k>=0, T(n,k)*(-1)^k ) = A136126(2*n-1,n-1) = A092552(n+1), alternating row sums.
Previous Showing 11-14 of 14 results.