cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A000465 Number of bipartite partitions of n white objects and 4 black ones.

Original entry on oeis.org

5, 12, 29, 57, 109, 189, 323, 522, 831, 1279, 1941, 2876, 4215, 6066, 8644, 12151, 16933, 23336, 31921, 43264, 58250, 77825, 103362, 136371, 178975, 233532, 303268, 391831, 504069, 645520, 823419, 1046067, 1324136, 1669950, 2099104, 2629685, 3284325, 4089300
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^4 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^4}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 4; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[(5 + 2*x - 3*x^3 - 5*x^4 - x^5 + 3*x^7 + x^8 - x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 4 then A054225(4,n) else A054225(n,4). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ sqrt(3) * n * exp(Pi*sqrt(2*n/3)) / (8*Pi^4). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A000491 Number of bipartite partitions of n white objects and 5 black ones.

Original entry on oeis.org

7, 19, 47, 97, 189, 339, 589, 975, 1576, 2472, 3804, 5727, 8498, 12400, 17874, 25433, 35818, 49908, 68939, 94378, 128234, 172917, 231630, 308240, 407804, 536412, 701910, 913773, 1184022, 1527165, 1961432, 2508762, 3196473, 4057403, 5132066
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^5 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^5}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A054225.
Cf. A005380.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(243*2^n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 27 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[3^5*2^n, 3^5*2^n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(7 + 5*x + 2*x^2 - 2*x^3 - 7*x^4 - 9*x^5 - 6*x^6 + x^7 + 4*x^8 + 6*x^9 + 3*x^10 + x^11 - 3*x^12 - 2*x^13 + x^14)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 5 then A054225(5,n) else A054225(n,5). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*n^(3/2) * exp(Pi*sqrt(2*n/3)) / (20*sqrt(2)*Pi^5). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A002756 Number of bipartite partitions of n white objects and 7 black ones.

Original entry on oeis.org

15, 45, 118, 257, 522, 975, 1752, 2998, 4987, 8043, 12693, 19584, 29719, 44324, 65210, 94642, 135805, 192699, 270822, 377048, 520624, 713123, 969784, 1309646, 1757447, 2343931, 3108553, 4100220, 5380964, 7027376, 9135769, 11824507
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^7 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^7}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 7 of A054225.
Cf. A005380.

Programs

  • Mathematica
    p = 2; q = 3; b[n_, k_] :=  b[n, k] = If[n>k, 0, 1] +  If[PrimeQ[n], 0,  Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^7, p^n*q^7]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(15 + 15*x + 13*x^2 + 6*x^3 - 5*x^4 - 15*x^5 - 28*x^6 - 34*x^7 - 26*x^8 - 10*x^9 + 6*x^10 + 25*x^11 + 27*x^12 + 31*x^13 + 20*x^14 + 3*x^15 - 9*x^16 - 16*x^17 - 17*x^18 - 9*x^19 - 4*x^20 + 8*x^22 + 6*x^23 + 4*x^24 - 3*x^25 - 3*x^26 + x^27)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 7 then A054225(7,n) else A054225(n,7). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*n^(5/2) * exp(Pi*sqrt(2*n/3)) / (140*sqrt(2)*Pi^7). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A323655 Number of non-isomorphic multiset partitions of weight n with at most 2 distinct vertices, or with at most 2 (not necessarily distinct) edges.

Original entry on oeis.org

1, 1, 4, 7, 19, 35, 80, 149, 307, 566, 1092, 1974, 3643, 6447, 11498, 19947, 34636, 58974, 100182, 167713, 279659, 461056, 756562, 1230104, 1990255, 3195471, 5105540, 8103722, 12801925, 20107448, 31439978, 48907179, 75755094, 116797754, 179354540, 274253042
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of nonnegative integer matrices with only one or two columns, no zero rows or columns, and sum of entries equal to n, up to row and column permutations.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 19 multiset partitions with at most 2 distinct vertices:
  {{1}}  {{11}}    {{111}}      {{1111}}
         {{12}}    {{122}}      {{1122}}
         {{1}{1}}  {{1}{11}}    {{1222}}
         {{1}{2}}  {{1}{22}}    {{1}{111}}
                   {{2}{12}}    {{11}{11}}
                   {{1}{1}{1}}  {{1}{122}}
                   {{1}{2}{2}}  {{11}{22}}
                                {{12}{12}}
                                {{1}{222}}
                                {{12}{22}}
                                {{2}{122}}
                                {{1}{1}{11}}
                                {{1}{1}{22}}
                                {{1}{2}{12}}
                                {{1}{2}{22}}
                                {{2}{2}{12}}
                                {{1}{1}{1}{1}}
                                {{1}{1}{2}{2}}
                                {{1}{2}{2}{2}}
Non-isomorphic representatives of the a(1) = 1 through a(4) = 19 multiset partitions with at most 2 edges:
  {{1}}  {{11}}    {{111}}    {{1111}}
         {{12}}    {{122}}    {{1122}}
         {{1}{1}}  {{123}}    {{1222}}
         {{1}{2}}  {{1}{11}}  {{1233}}
                   {{1}{22}}  {{1234}}
                   {{1}{23}}  {{1}{111}}
                   {{2}{12}}  {{11}{11}}
                              {{1}{122}}
                              {{11}{22}}
                              {{12}{12}}
                              {{1}{222}}
                              {{12}{22}}
                              {{1}{233}}
                              {{12}{33}}
                              {{1}{234}}
                              {{12}{34}}
                              {{13}{23}}
                              {{2}{122}}
                              {{3}{123}}
Inequivalent representatives of the a(4) = 19 matrices:
  [4] [2 2] [1 3]
.
  [1] [1 0] [1 0] [0 1] [2] [2 0] [1 1] [1 1]
  [3] [1 2] [0 3] [1 2] [2] [0 2] [1 1] [0 2]
.
  [1] [1 0] [1 0] [1 0] [0 1]
  [1] [1 0] [0 1] [0 1] [0 1]
  [2] [0 2] [1 1] [0 2] [1 1]
.
  [1] [1 0] [1 0]
  [1] [1 0] [0 1]
  [1] [0 1] [0 1]
  [1] [0 1] [0 1]
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={concat(1, (EulerT(vector(n, k, k+1)) + EulerT(vector(n, k, if(k%2, 0, (k+6)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019

Formula

a(2*n) = (A005380(2*n) + A005986(n))/2; a(2*n+1) = A005380(2*n+1)/2. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019

A002757 Number of bipartite partitions of n white objects and 8 black ones.

Original entry on oeis.org

22, 67, 181, 401, 831, 1576, 2876, 4987, 8406, 13715, 21893, 34134, 52327, 78785, 116982, 171259, 247826, 354482, 502090, 704265, 979528, 1351109, 1849932, 2514723, 3396262, 4557867, 6081466, 8068930, 10650479, 13987419, 18283999
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^8 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^8}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 8 of A054225.
Cf. A005380.

Programs

  • Mathematica
    p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^8, p^n*q^8]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(22 + 23*x + 25*x^2 + 16*x^3 + 4*x^4 - 14*x^5 - 34*x^6 - 50*x^7 - 65*x^8 - 52*x^9 - 32*x^10 + 5*x^11 + 27*x^12 + 57*x^13 + 67*x^14 + 65*x^15 + 42*x^16 + 15*x^17 - 14*x^18 - 34*x^19 - 40*x^20 - 46*x^21 - 26*x^22 - 8*x^23 + 8*x^24 + 11*x^25 + 18*x^26 + 14*x^27 + 9*x^28 + 3*x^29 - 7*x^30 - 7*x^31 - 6*x^32 + 3*x^33 + 3*x^34 - x^35)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7) * (1-x^8)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 8 then A054225(8,n) else A054225(n,8). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*sqrt(3) * n^3 * exp(Pi*sqrt(2*n/3)) / (1120*Pi^8). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A002758 Number of bipartite partitions of n white objects and 9 black ones.

Original entry on oeis.org

30, 97, 267, 608, 1279, 2472, 4571, 8043, 13715, 22652, 36535, 57568, 89079, 135384, 202747, 299344, 436597, 629364, 897970, 1268634, 1776562, 2466961, 3399463, 4650218, 6318429, 8529869, 11446563, 15272827, 20269135, 26762094
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^9 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^9}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 9 of A054225.
Cf. A005380.

Programs

  • Mathematica
    p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^9, p^n*q^9]; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(30 + 37*x + 43*x^2 + 37*x^3 + 20*x^4 - 3*x^5 - 35*x^6 - 65*x^7 - 97*x^8 - 119*x^9 - 109*x^10 - 69*x^11 - 26*x^12 + 37*x^13 + 89*x^14 + 131*x^15 + 142*x^16 + 141*x^17 + 97*x^18 + 44*x^19 - 18*x^20 - 72*x^21 - 100*x^22 - 108*x^23 - 96*x^24 - 69*x^25 - 25*x^26 + 12*x^27 + 42*x^28 + 52*x^29 + 54*x^30 + 35*x^31 + 14*x^32 + 2*x^33 - 4*x^34 - 20*x^35 - 19*x^36 - 14*x^37 - 8*x^38 + 7*x^39 + 8*x^40 + 8*x^41 - 2*x^42 - 4*x^43 + x^44)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7) * (1-x^8) * (1-x^9)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 9 then A054225(9,n) else A054225(n,9). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ n^(7/2) * exp(Pi*sqrt(2*n/3)) / (560*sqrt(2)*Pi^9). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A002759 Number of bipartite partitions of n white objects and 10 black ones.

Original entry on oeis.org

42, 139, 392, 907, 1941, 3804, 7128, 12693, 21893, 36535, 59521, 94664, 147794, 226524, 342006, 508866, 747753, 1085635, 1559725, 2218272, 3126541, 4368724, 6056705, 8333955, 11388614, 15460291, 20859497, 27979454, 37324367, 49529018
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^10 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^10}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 10 of A054225.
Cf. A005380.

Programs

  • Mathematica
    p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^10, p^n*q^10]; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[(42 + 55*x + 72*x^2 + 68*x^3 + 55*x^4 + 22*x^5 - 21*x^6 - 72*x^7 - 126*x^8 - 178*x^9 - 222*x^10 - 203*x^11 - 169*x^12 - 81*x^13 + 15*x^14 + 125*x^15 + 209*x^16 + 286*x^17 + 303*x^18 + 299*x^19 + 219*x^20 + 107*x^21 - 4*x^22 - 117*x^23 - 208*x^24 - 263*x^25 - 257*x^26 - 232*x^27 - 151*x^28 - 69*x^29 + 29*x^30 + 92*x^31 + 130*x^32 + 145*x^33 + 143*x^34 + 97*x^35 + 48*x^36 - 2*x^37 - 39*x^38 - 48*x^39 - 58*x^40 - 41*x^41 - 31*x^42 - 19*x^43 - 4*x^44 + 19*x^45 + 21*x^46 + 20*x^47 + 13*x^48 - 4*x^49 - 9*x^50 - 10*x^51 + 2*x^52 + 4*x^53 - x^54)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7) * (1-x^8) * (1-x^9) * (1-x^10)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 10 then A054225(10,n) else A054225(n,10). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ sqrt(3) * n^4 * exp(Pi*sqrt(2*n/3)) / (5600*Pi^10). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004

A091437 Number of bipartite partitions of ceiling(n/2) white objects and floor(n/2) black ones.

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 31, 57, 109, 189, 339, 589, 1043, 1752, 2998, 4987, 8406, 13715, 22652, 36535, 59521, 94664, 151958, 239241, 379693, 591271, 927622, 1431608, 2224235, 3402259, 5236586, 7947530, 12130780, 18272221, 27669593, 41393154
Offset: 0

Views

Author

Christian G. Bower, Jan 08 2004

Keywords

Crossrefs

a(n) = A054225(n, [n/2]). Cf. A002774, A005380.

Programs

  • Mathematica
    max = 35; se = Series[ Sum[ Log[1 - x^(n - k)*y^k], {n, 1, 2max}, {k, 0, n}], {x, 0, 2max}, {y, 0, 2max}]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max}, {y, 0, 2max}], {x, y}]; a[n_] := coes[[ Ceiling[(n+2)/2], Floor[(n+2)/2] ]]; Table[a[n], {n, 0, max} ](* Jean-François Alcover, Dec 06 2011 *)

A261451 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(k+1).

Original entry on oeis.org

1, 4, 14, 44, 124, 328, 824, 1980, 4590, 10320, 22584, 48268, 101016, 207432, 418704, 832032, 1629764, 3150280, 6014998, 11354084, 21204488, 39206168, 71811256, 130369900, 234704360, 419195412, 743085912, 1307823672, 2286094704, 3970174648, 6852048368
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2015

Keywords

Comments

Convolution of A005380 and A219555.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k+1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (7*Zeta(3))^(13/36) * exp(1/12 - Pi^4/(336*Zeta(3)) + Pi^2 * n^(1/3) / (2^(5/3) * (7*Zeta(3))^(1/3)) + 3/2 * ((7*Zeta(3))/2)^(1/3) * n^(2/3)) / (A * 2^(35/18) * 3^(1/2) * Pi * n^(31/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A298988 a(n) = [x^n] Product_{k>=1} 1/(1 + n*x^k)^k.

Original entry on oeis.org

1, -1, 0, -18, 208, -2400, 36504, -663754, 13808320, -324176418, 8487126400, -245122390601, 7741417124880, -265402847130421, 9816338228638872, -389618889514254225, 16518399076342421248, -745025763154442071130, 35619835529954597786208, -1799459812004380374518790, 95780758238408017088795600
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ (-1)^n * n^n * (1 - 2/n + 6/n^2 - 14/n^3 + 33/n^4 - 70/n^5 + 149/n^6 - 298/n^7 + 591/n^8 - 1132/n^9 + 2139/n^10 + ...), for coefficients, see A005380. - Vaclav Kotesovec, Aug 21 2018
Previous Showing 21-30 of 38 results. Next