A000465
Number of bipartite partitions of n white objects and 4 black ones.
Original entry on oeis.org
5, 12, 29, 57, 109, 189, 323, 522, 831, 1279, 1941, 2876, 4215, 6066, 8644, 12151, 16933, 23336, 31921, 43264, 58250, 77825, 103362, 136371, 178975, 233532, 303268, 391831, 504069, 645520, 823419, 1046067, 1324136, 1669950, 2099104, 2629685, 3284325, 4089300
Offset: 0
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
- F. C. Auluck, On partitions of bipartite numbers, Proc. Cambridge Philos. Soc. 49, (1953). 72-83.
- F. C. Auluck, On partitions of bipartite numbers, annotated scan of a few pages.
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956 (Annotated scanned pages from, plus a review)
-
max = 40; col = 4; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
nmax = 50; CoefficientList[Series[(5 + 2*x - 3*x^3 - 5*x^4 - x^5 + 3*x^7 + x^8 - x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
A000491
Number of bipartite partitions of n white objects and 5 black ones.
Original entry on oeis.org
7, 19, 47, 97, 189, 339, 589, 975, 1576, 2472, 3804, 5727, 8498, 12400, 17874, 25433, 35818, 49908, 68939, 94378, 128234, 172917, 231630, 308240, 407804, 536412, 701910, 913773, 1184022, 1527165, 1961432, 2508762, 3196473, 4057403, 5132066
Offset: 0
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- F. C. Auluck, On partitions of bipartite numbers, Proc. Cambridge Philos. Soc. 49, (1953). 72-83.
- F. C. Auluck, On partitions of bipartite numbers, annotated scan of a few pages.
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956 (Annotated scanned pages from, plus a review)
-
with(numtheory):
b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
end:
a:= n-> b(243*2^n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Jun 27 2013
-
b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[3^5*2^n, 3^5*2^n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[(7 + 5*x + 2*x^2 - 2*x^3 - 7*x^4 - 9*x^5 - 6*x^6 + x^7 + 4*x^8 + 6*x^9 + 3*x^10 + x^11 - 3*x^12 - 2*x^13 + x^14)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
A002756
Number of bipartite partitions of n white objects and 7 black ones.
Original entry on oeis.org
15, 45, 118, 257, 522, 975, 1752, 2998, 4987, 8043, 12693, 19584, 29719, 44324, 65210, 94642, 135805, 192699, 270822, 377048, 520624, 713123, 969784, 1309646, 1757447, 2343931, 3108553, 4100220, 5380964, 7027376, 9135769, 11824507
Offset: 0
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^7, p^n*q^7]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[(15 + 15*x + 13*x^2 + 6*x^3 - 5*x^4 - 15*x^5 - 28*x^6 - 34*x^7 - 26*x^8 - 10*x^9 + 6*x^10 + 25*x^11 + 27*x^12 + 31*x^13 + 20*x^14 + 3*x^15 - 9*x^16 - 16*x^17 - 17*x^18 - 9*x^19 - 4*x^20 + 8*x^22 + 6*x^23 + 4*x^24 - 3*x^25 - 3*x^26 + x^27)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
A323655
Number of non-isomorphic multiset partitions of weight n with at most 2 distinct vertices, or with at most 2 (not necessarily distinct) edges.
Original entry on oeis.org
1, 1, 4, 7, 19, 35, 80, 149, 307, 566, 1092, 1974, 3643, 6447, 11498, 19947, 34636, 58974, 100182, 167713, 279659, 461056, 756562, 1230104, 1990255, 3195471, 5105540, 8103722, 12801925, 20107448, 31439978, 48907179, 75755094, 116797754, 179354540, 274253042
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 19 multiset partitions with at most 2 distinct vertices:
{{1}} {{11}} {{111}} {{1111}}
{{12}} {{122}} {{1122}}
{{1}{1}} {{1}{11}} {{1222}}
{{1}{2}} {{1}{22}} {{1}{111}}
{{2}{12}} {{11}{11}}
{{1}{1}{1}} {{1}{122}}
{{1}{2}{2}} {{11}{22}}
{{12}{12}}
{{1}{222}}
{{12}{22}}
{{2}{122}}
{{1}{1}{11}}
{{1}{1}{22}}
{{1}{2}{12}}
{{1}{2}{22}}
{{2}{2}{12}}
{{1}{1}{1}{1}}
{{1}{1}{2}{2}}
{{1}{2}{2}{2}}
Non-isomorphic representatives of the a(1) = 1 through a(4) = 19 multiset partitions with at most 2 edges:
{{1}} {{11}} {{111}} {{1111}}
{{12}} {{122}} {{1122}}
{{1}{1}} {{123}} {{1222}}
{{1}{2}} {{1}{11}} {{1233}}
{{1}{22}} {{1234}}
{{1}{23}} {{1}{111}}
{{2}{12}} {{11}{11}}
{{1}{122}}
{{11}{22}}
{{12}{12}}
{{1}{222}}
{{12}{22}}
{{1}{233}}
{{12}{33}}
{{1}{234}}
{{12}{34}}
{{13}{23}}
{{2}{122}}
{{3}{123}}
Inequivalent representatives of the a(4) = 19 matrices:
[4] [2 2] [1 3]
.
[1] [1 0] [1 0] [0 1] [2] [2 0] [1 1] [1 1]
[3] [1 2] [0 3] [1 2] [2] [0 2] [1 1] [0 2]
.
[1] [1 0] [1 0] [1 0] [0 1]
[1] [1 0] [0 1] [0 1] [0 1]
[2] [0 2] [1 1] [0 2] [1 1]
.
[1] [1 0] [1 0]
[1] [1 0] [0 1]
[1] [0 1] [0 1]
[1] [0 1] [0 1]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={concat(1, (EulerT(vector(n, k, k+1)) + EulerT(vector(n, k, if(k%2, 0, (k+6)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019
A002757
Number of bipartite partitions of n white objects and 8 black ones.
Original entry on oeis.org
22, 67, 181, 401, 831, 1576, 2876, 4987, 8406, 13715, 21893, 34134, 52327, 78785, 116982, 171259, 247826, 354482, 502090, 704265, 979528, 1351109, 1849932, 2514723, 3396262, 4557867, 6081466, 8068930, 10650479, 13987419, 18283999
Offset: 0
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^8, p^n*q^8]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[(22 + 23*x + 25*x^2 + 16*x^3 + 4*x^4 - 14*x^5 - 34*x^6 - 50*x^7 - 65*x^8 - 52*x^9 - 32*x^10 + 5*x^11 + 27*x^12 + 57*x^13 + 67*x^14 + 65*x^15 + 42*x^16 + 15*x^17 - 14*x^18 - 34*x^19 - 40*x^20 - 46*x^21 - 26*x^22 - 8*x^23 + 8*x^24 + 11*x^25 + 18*x^26 + 14*x^27 + 9*x^28 + 3*x^29 - 7*x^30 - 7*x^31 - 6*x^32 + 3*x^33 + 3*x^34 - x^35)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7) * (1-x^8)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
A002758
Number of bipartite partitions of n white objects and 9 black ones.
Original entry on oeis.org
30, 97, 267, 608, 1279, 2472, 4571, 8043, 13715, 22652, 36535, 57568, 89079, 135384, 202747, 299344, 436597, 629364, 897970, 1268634, 1776562, 2466961, 3399463, 4650218, 6318429, 8529869, 11446563, 15272827, 20269135, 26762094
Offset: 0
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^9, p^n*q^9]; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[(30 + 37*x + 43*x^2 + 37*x^3 + 20*x^4 - 3*x^5 - 35*x^6 - 65*x^7 - 97*x^8 - 119*x^9 - 109*x^10 - 69*x^11 - 26*x^12 + 37*x^13 + 89*x^14 + 131*x^15 + 142*x^16 + 141*x^17 + 97*x^18 + 44*x^19 - 18*x^20 - 72*x^21 - 100*x^22 - 108*x^23 - 96*x^24 - 69*x^25 - 25*x^26 + 12*x^27 + 42*x^28 + 52*x^29 + 54*x^30 + 35*x^31 + 14*x^32 + 2*x^33 - 4*x^34 - 20*x^35 - 19*x^36 - 14*x^37 - 8*x^38 + 7*x^39 + 8*x^40 + 8*x^41 - 2*x^42 - 4*x^43 + x^44)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7) * (1-x^8) * (1-x^9)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
A002759
Number of bipartite partitions of n white objects and 10 black ones.
Original entry on oeis.org
42, 139, 392, 907, 1941, 3804, 7128, 12693, 21893, 36535, 59521, 94664, 147794, 226524, 342006, 508866, 747753, 1085635, 1559725, 2218272, 3126541, 4368724, 6056705, 8333955, 11388614, 15460291, 20859497, 27979454, 37324367, 49529018
Offset: 0
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^10, p^n*q^10]; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[(42 + 55*x + 72*x^2 + 68*x^3 + 55*x^4 + 22*x^5 - 21*x^6 - 72*x^7 - 126*x^8 - 178*x^9 - 222*x^10 - 203*x^11 - 169*x^12 - 81*x^13 + 15*x^14 + 125*x^15 + 209*x^16 + 286*x^17 + 303*x^18 + 299*x^19 + 219*x^20 + 107*x^21 - 4*x^22 - 117*x^23 - 208*x^24 - 263*x^25 - 257*x^26 - 232*x^27 - 151*x^28 - 69*x^29 + 29*x^30 + 92*x^31 + 130*x^32 + 145*x^33 + 143*x^34 + 97*x^35 + 48*x^36 - 2*x^37 - 39*x^38 - 48*x^39 - 58*x^40 - 41*x^41 - 31*x^42 - 19*x^43 - 4*x^44 + 19*x^45 + 21*x^46 + 20*x^47 + 13*x^48 - 4*x^49 - 9*x^50 - 10*x^51 + 2*x^52 + 4*x^53 - x^54)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7) * (1-x^8) * (1-x^9) * (1-x^10)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
A091437
Number of bipartite partitions of ceiling(n/2) white objects and floor(n/2) black ones.
Original entry on oeis.org
1, 1, 2, 4, 9, 16, 31, 57, 109, 189, 339, 589, 1043, 1752, 2998, 4987, 8406, 13715, 22652, 36535, 59521, 94664, 151958, 239241, 379693, 591271, 927622, 1431608, 2224235, 3402259, 5236586, 7947530, 12130780, 18272221, 27669593, 41393154
Offset: 0
-
max = 35; se = Series[ Sum[ Log[1 - x^(n - k)*y^k], {n, 1, 2max}, {k, 0, n}], {x, 0, 2max}, {y, 0, 2max}]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max}, {y, 0, 2max}], {x, y}]; a[n_] := coes[[ Ceiling[(n+2)/2], Floor[(n+2)/2] ]]; Table[a[n], {n, 0, max} ](* Jean-François Alcover, Dec 06 2011 *)
A261451
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(k+1).
Original entry on oeis.org
1, 4, 14, 44, 124, 328, 824, 1980, 4590, 10320, 22584, 48268, 101016, 207432, 418704, 832032, 1629764, 3150280, 6014998, 11354084, 21204488, 39206168, 71811256, 130369900, 234704360, 419195412, 743085912, 1307823672, 2286094704, 3970174648, 6852048368
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k+1), {k, 1, nmax}], {x, 0, nmax}], x]
A298988
a(n) = [x^n] Product_{k>=1} 1/(1 + n*x^k)^k.
Original entry on oeis.org
1, -1, 0, -18, 208, -2400, 36504, -663754, 13808320, -324176418, 8487126400, -245122390601, 7741417124880, -265402847130421, 9816338228638872, -389618889514254225, 16518399076342421248, -745025763154442071130, 35619835529954597786208, -1799459812004380374518790, 95780758238408017088795600
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 + n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Comments