cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 433 results. Next

A065406 Mersenne prime exponents (A000043) which are also Sophie Germain primes (A005384).

Original entry on oeis.org

2, 3, 5, 89, 9689, 21701, 859433, 43112609
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Comments

From Gord Palameta, Jul 19 2018: (Start)
All terms after the first two are congruent to 1 modulo 4, because if p is a Sophie Germain prime that is congruent to 3 modulo 4 then 2p + 1 divides 2^p - 1.
Boklan and Conway conjecture that this sequence is finite.
(End)

Examples

			31 = 2^5 - 1 and 11 = 2 * 5 + 1 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[2# + 1] && PrimeQ[2^# - 1] &] (* Alonso del Arte, Jul 20 2018 *)
    Select[Prime@ Range[10^6], And[PrimeQ[2 # + 1], MersennePrimeExponentQ@ #] &] (* Michael De Vlieger, Jul 20 2018 *)

Extensions

a(8) = 43112609, since the ordinal position of this term in A000043 is now confirmed. - Gord Palameta, Jul 19 2018

A066818 a(n) is the least k such that n + Sum_{i=1..k} A005384(i) is prime; or 0 if none exists.

Original entry on oeis.org

1, 2, 1, 12, 1, 2, 3, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 3, 4, 1, 4, 5, 2, 7, 2, 1, 6, 1, 6, 3, 2, 3, 6, 1, 2, 3, 2, 1, 4, 1, 2, 3, 8, 1, 4, 11, 2, 3, 4, 1, 4, 5, 2, 13, 2, 1, 4, 1, 8, 3, 2, 3, 6, 1, 2, 7, 2, 1, 10, 1, 8, 3, 2, 15, 4, 1, 2, 3, 4, 1, 4, 5, 2, 7, 4
Offset: 1

Views

Author

Joseph L. Pe, Jan 19 2002

Keywords

Comments

There is some empirical evidence to suggest a(n) is nonzero for every n. That is, every n can be expressed as the difference between a prime and a partial sum of the Sophie Germain primes series. See A066753 for a similar conjecture.

Examples

			7 + (2 + 3 + 5) = 17, a prime and three consecutive Sophie Germain primes starting from 2, the first Sophie Germain prime, are needed to achieve this. So a(7) = 3.
		

Crossrefs

Programs

  • PARI
    a(n) = my(p=0, s=n); for(k=1, oo, until(isprime(2*p+1), p=nextprime(p+1)); if(isprime(s+=p), return(k))); \\ Jinyuan Wang, Jul 30 2020

Extensions

a(53) corrected by and more terms from Jinyuan Wang, Jul 30 2020

A080209 Gilbreath transform of the sequence of Sophie Germain primes (A005384), i.e., the diagonal of leading successive absolute differences of A005384.

Original entry on oeis.org

2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

John W. Layman, Mar 20 2003

Keywords

Comments

Conjecture: The diagonal of leading successive absolute differences of the Sophie Germain primes consists, except for the initial 2, only of 1's and 3s.

Examples

			The difference table begins:
   2;
   3,  1;
   5,  2,  1;
  11,  6,  4,  3;
  23, 12,  6,  2,  1;
  29,  6,  6,  0,  2,  1;
		

Crossrefs

Programs

  • Mathematica
    sgp[1] = Select[Prime[Range[1000]], PrimeQ[2 # + 1]&];
    sgp[n_] := Differences[sgp[n - 1]] // Abs;
    Table[sgp[n], {n, 1, 105}][[All, 1]] (* Jean-François Alcover, Feb 04 2019 *)

A095750 "Degree" of the Sophie Germain primes (A005384).

Original entry on oeis.org

0, 0, 1, 2, 3, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Andrew S. Plewe, Jul 09 2004

Keywords

Comments

This sequence is derived from the special case of Cunningham chains of the first kind where every member of the chain is a Sophie Germain prime.
This sequence can be obtained by subtracting 2 from A074313 and then deleting all negative members. - David Wasserman, Sep 13 2007

Examples

			Entries 0, 0, 1, 2, 3 correspond to the Sophie Germain primes 2, 3, 5, 11, 23. 5 is degree 1 because 5 = (2 * 2) + 1 and 2 is also a Sophie Germain prime. Similarly, 11 = (5 * 2) + 1, therefore 11 is degree 2. 23 = (11 * 2) + 1, thus 23 is degree 3 and so on.
		

Crossrefs

Cf. A005384.

Extensions

More terms from David Wasserman, Sep 13 2007

A100031 Bisection of A005384.

Original entry on oeis.org

2, 5, 23, 41, 83, 113, 173, 191, 239, 281, 359, 431, 491, 593, 653, 683, 743, 809, 953, 1019, 1049, 1223, 1289, 1439, 1481, 1511, 1583, 1733, 1889, 1931, 2003, 2063, 2129, 2273, 2351, 2399, 2543, 2693, 2741, 2819, 2939, 2969, 3299, 3359, 3413, 3491, 3593
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Crossrefs

Cf. A005384.

Programs

  • Maple
    A:={}: for n from 1 to 608 do if isprime(2*ithprime(n)+1)=true then A:=A union {ithprime(n)} else A:=A fi od: B:=convert(A, list): seq(B[2*j-1],j=1..nops(B)/2);

Extensions

More terms from Emeric Deutsch, Dec 09 2004

A100032 Bisection of A005384.

Original entry on oeis.org

3, 11, 29, 53, 89, 131, 179, 233, 251, 293, 419, 443, 509, 641, 659, 719, 761, 911, 1013, 1031, 1103, 1229, 1409, 1451, 1499, 1559, 1601, 1811, 1901, 1973, 2039, 2069, 2141, 2339, 2393, 2459, 2549, 2699, 2753, 2903, 2963, 3023, 3329, 3389, 3449, 3539, 3623
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Programs

  • Maple
    A:={}: for n from 1 to 608 do if isprime(2*ithprime(n)+1)=true then A:=A union {ithprime(n)} else A:=A fi od: B:=convert(A, list): seq(B[2*j],j=1..nops(B)/2);

Extensions

More terms from Emeric Deutsch, Dec 09 2004

A134729 Concatenation of next n Sophie Germain primes A005384(n).

Original entry on oeis.org

2, 35, 112329, 41538389, 113131173179191, 233239251281293359, 419431443491509593641, 653659683719743761809911, 95310131019103110491103122312291289, 1409143914511481149915111559158316011733, 18111889190119311973200320392063206921292141
Offset: 1

Views

Author

Omar E. Pol, Nov 10 2007

Keywords

Crossrefs

Programs

  • Mathematica
    With[{sgp=Select[Prime[Range[500]],PrimeQ[2#+1]&]},Table[ FromDigits[ Flatten[IntegerDigits/@Take[sgp,{(n(n+1))/2+1,((n+1)(n+2))/2}]]],{n,0,11}]] (* Harvey P. Dale, Mar 24 2013 *)

Extensions

More terms from Harvey P. Dale, Mar 24 2013

A134730 Successive digits of Sophie Germain primes A005384(n).

Original entry on oeis.org

2, 3, 5, 1, 1, 2, 3, 2, 9, 4, 1, 5, 3, 8, 3, 8, 9, 1, 1, 3, 1, 3, 1, 1, 7, 3, 1, 7, 9, 1, 9, 1, 2, 3, 3, 2, 3, 9, 2, 5, 1, 2, 8, 1, 2, 9, 3, 3, 5, 9, 4, 1, 9, 4, 3, 1, 4, 4, 3, 4, 9, 1, 5, 0, 9, 5, 9, 3, 6, 4, 1, 6, 5, 3, 6, 5, 9, 6, 8, 3
Offset: 1

Views

Author

Omar E. Pol, Nov 10 2007

Keywords

Crossrefs

A261963 Smallest number that can be written as the sum of a Sophie Germain prime (A005384) and a practical number (A005153) in exactly n ways.

Original entry on oeis.org

2, 3, 6, 23, 31, 35, 65, 59, 95, 131, 173, 233, 203, 239, 257, 299, 317, 323, 473, 443, 635, 563, 671, 719, 809, 701, 779, 839, 803, 1109, 971, 1049, 1139, 1343, 1103, 1409, 1433, 1607, 1481, 1499, 1559, 1523, 1769, 1679, 1643, 2069, 2063, 2309, 2111, 2141
Offset: 0

Views

Author

Felix Fröhlich, Sep 06 2015

Keywords

Examples

			23 can be written as the sum of a Sophie Germain prime and a practical number in the following three ways: 3 + 20, 5 + 18, 11 + 12.
Since 23 is the smallest number that can be expressed like that in exactly three ways, a(3) = 23.
		

Crossrefs

Programs

  • PARI
    \\ First define the function is_a005153(n) as in A005153
    is_a005384(n) = ispseudoprime(n) && ispseudoprime(2*n+1)
    count(n) = x=1; y=n-1; i=0; while(y > n/2, if((is_a005153(x) && is_a005384(y)) || (is_a005153(y) && is_a005384(x)), i++); x++; y--); i
    a(n) = k=2; while(count(k)!=n, k++); k

A379148 a(n) is the number of iterations of the function x --> 2*x + 1 such that x remains prime, starting from A005384(n).

Original entry on oeis.org

4, 1, 3, 2, 1, 1, 2, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 3, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Ctibor O. Zizka, Dec 16 2024

Keywords

Comments

Cunningham chain of the first kind of length i is a sequence of prime numbers (p_1, ..., p_i) such that p_(r + 1) = 2*p_r + 1 for all 1 =< r < i. This sequence tells the length of the Cunningham chain of the first kind for primes from A005384.

Examples

			n = 1: A005384(1) = 2 --> 5 --> 11 --> 23 --> 47 --> 95, 95 is not a prime, thus a(1) = 4.
n = 2: A005384(2) = 3 --> 7 --> 15, 15 is not a prime, thus a(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := -2 + Length[NestWhileList[2*# + 1 &, n, PrimeQ[#] &]]; Select[Array[s, 5000], # > 0 &] (* Amiram Eldar, Dec 16 2024 *)

Formula

a(A371980(n)) = 1.
Previous Showing 11-20 of 433 results. Next