cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A053503 Number of degree-n permutations of order dividing 16.

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 1914926104576, 29475151020032, 501759779405824, 6238907914387456, 120652091860975616, 1751735807564578816, 29062253310781161472, 398033706586943258624
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

Differs from A005388 first at n=32. - Alois P. Heinz, Feb 14 2013

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..2^j-1)*a(n-2^j), j=0..4)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= a[n] =If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, 2^j-1}]* a[n-2^j], {j, 0, 4}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^4/4 +x^8/8 + x^16/16], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16).

A218003 Number of degree-n permutations of order a power of 3.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 81, 351, 1233, 46089, 434241, 2359611, 27387801, 264333213, 1722161169, 16514298711, 163094452641, 1216239520401, 50883607918593, 866931703203699, 8473720481213481, 166915156382509221, 2699805625227141201, 28818706120636531023, 439756550972215638129, 6766483260087819272601, 77096822666547068590401, 406859605390184444341678251
Offset: 0

Views

Author

Paul D. Hanna, Oct 17 2012

Keywords

Comments

Differs from A053499 first at n=27. - Alois P. Heinz, Jan 25 2014

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 81*x^6/6! +...
where
log(A(x)) = x + x^3/3 + x^9/9 + x^27/27 + x^81/81 +...+ x^3^n/3^n +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..3^j-1)*a(n-3^j), j=0..ilog[3](n))))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 25 2014
  • Mathematica
    a[n_] := a[n] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n-i, {i, 1, 3^j-1}]*a[n-3^j], {j, 0, Floor@Log[3, n]}]]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2025, after Alois P. Heinz *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k)/3^k)+x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: exp( Sum_{n>=0} x^(3^n)/3^n ).

A308392 Expansion of e.g.f. exp(x + 2 * Sum_{k>=1} x^(2^k)/2^k).

Original entry on oeis.org

1, 1, 3, 7, 37, 141, 871, 4243, 42057, 285337, 3008971, 23292831, 295839853, 2733811237, 35818366767, 360892885291, 8394097115281, 113063153955633, 2347668770502547, 32362689647446327, 744513384520939701, 11439249110436735421, 245772094687992577783, 3860080495614830875587
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[x + 2 Sum[x^(2^k)/2^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[Product[(1 - x^k)^((-1)^k MoebiusMu[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: Product_{k>=1} (1 - x^k)^((-1)^k*mu(k)/k).
E.g.f.: exp(-x)*g(x)^2, where g(x) = e.g.f. of A005388.

A374346 E.g.f. A(x) satisfies A(x) = A(x^2)^(1/2) * exp(2*x) with A(0)=1.

Original entry on oeis.org

1, 2, 6, 20, 88, 432, 2464, 14912, 111360, 912896, 8491264, 80905728, 861835264, 9524264960, 113218762752, 1362387243008, 20665650774016, 337892698226688, 6100999266304000, 106342541313572864, 2014622956858638336, 37864490015441027072
Offset: 0

Views

Author

Seiichi Manyama, Jul 05 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(2*sum(k=0, ceil(log(N+1)/log(2)), x^2^k/2^k))))

Formula

E.g.f.: exp( 2 * Sum_{k>=0} x^(2^k)/2^k ).
E.g.f.: 1/( Product_{k>=1} (1 - x^(2*k-1))^(mu(2*k-1)/(2*k-1)) )^2, where mu() is the Moebius function.

A374364 Expansion of e.g.f. exp( x - Sum_{k>=1} x^(2^k)/2^k ).

Original entry on oeis.org

1, 1, 0, -2, -8, -24, 16, 400, -3072, -38528, -18944, 1287936, 17843200, 149045248, -188786688, -12007184384, -1265929355264, -20275964313600, 3871935889408, 2355175169523712, 45658709327609856, 565591105847689216, -1448855443865600000
Offset: 0

Views

Author

Seiichi Manyama, Jul 06 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-sum(k=1, ceil(log(N+1)/log(2)), x^2^k/2^k))))

Formula

E.g.f.: Product_{k>=1} (1 + x^(2*k-1))^(mu(2*k-1)/(2*k-1)), where mu() is the Moebius function.

A308461 Expansion of e.g.f. exp(x + 2 * Sum_{k>=2} x^(2^k)/2^k).

Original entry on oeis.org

1, 1, 1, 1, 13, 61, 181, 421, 15961, 137593, 682921, 2498761, 77344741, 927575221, 6402167773, 31881065581, 4104839160241, 68050288734961, 609856397747281, 3857727706737553, 222655237411428541, 4351842324095032621, 47276537013742616581, 361153046139022585141
Offset: 0

Views

Author

Ilya Gutkovskiy, May 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[x + 2 Sum[x^(2^k)/2^k, {k, 2, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[Product[(1 + (-x)^k)^((-1)^k MoebiusMu[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: Product_{k>=1} (1 + (-x)^k)^((-1)^k*mu(k)/k).
E.g.f.: exp(-x*(1 + x))*g(x)^2, where g(x) = e.g.f. of A005388.
Previous Showing 11-16 of 16 results.