cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A319911 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n with no 1's, such that m can be obtained by iteratively adding or multiplying together parts of y until only one part (equal to m) remains.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 9, 21, 31, 65, 102, 194, 321, 575, 956, 1652, 2684, 4576, 7367, 12035, 19490, 31185, 49418, 78595, 123393
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			The a(6) = 7 pairs:
  6 <= (6)
  6 <= (4,2)
  8 <= (4,2)
  6 <= (3,3)
  9 <= (3,3)
  6 <= (2,2,2)
  8 <= (2,2,2)
The a(7) = 9 pairs:
   7 <= (7)
   7 <= (5,2)
  10 <= (5,2)
   7 <= (4,3)
  12 <= (4,3)
   7 <= (3,2,2)
   8 <= (3,2,2)
  10 <= (3,2,2)
  12 <= (3,2,2)
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Total[Length/@nexos/@Select[IntegerPartitions[n],FreeQ[#,1]&]],{n,30}]

A117632 Number of 1's required to build n using {+,T} and parentheses, where T(i) = i*(i+1)/2.

Original entry on oeis.org

1, 2, 2, 3, 4, 2, 3, 4, 4, 3, 4, 4, 5, 6, 4, 5, 6, 6, 7, 6, 2, 3, 4, 4, 5, 6, 4, 3, 4, 5, 5, 6, 6, 5, 6, 4, 5, 6, 6, 7, 8, 4, 5, 6, 4, 5, 6, 6, 5, 6, 6, 7, 8, 8, 3, 4, 5, 5, 6, 7, 5, 6, 6, 7, 6, 4, 5, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 4, 5, 6, 6, 7, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 7, 7, 8, 9, 7, 8, 6, 7, 8, 8
Offset: 1

Views

Author

Jonathan Vos Post, Apr 08 2006

Keywords

Comments

This problem has the optimal substructure property.

Examples

			a(1) = 1 because "1" has a single 1.
a(2) = 2 because "1+1" has two 1's.
a(3) = 2 because 3 = T(1+1) has two 1's.
a(6) = 2 because 6 = T(T(1+1)).
a(10) = 3 because 10 = T(T(1+1)+1).
a(12) = 4 because 12 = T(T(1+1)) + T(T(1+1)).
a(15) = 4 because 15 = T(T(1+1)+1+1).
a(21) = 2 because 21 = T(T(T(1+1))).
a(28) = 3 because 28 = T(T(T(1+1))+1).
a(55) = 3 because 55 = T(T(T(1+1)+1)).
		

References

  • W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, 1971.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. F26.

Crossrefs

See also A023361 = number of compositions into sums of triangular numbers, A053614 = numbers that are not the sum of triangular numbers. Iterated triangular numbers: A050536, A050542, A050548, A050909, A007501.

Programs

  • Maple
    a:= proc(n) option remember; local m; m:= floor (sqrt (n*2));
          if n<3 then n
        elif n=m*(m+1)/2 then a(m)
        else min (seq (a(i)+a(n-i), i=1..floor(n/2)))
          fi
        end:
    seq (a(n), n=1..110);  # Alois P. Heinz, Jan 05 2011
  • Mathematica
    a[n_] := a[n] = Module[{m = Floor[Sqrt[n*2]]}, If[n < 3, n, If[n == m*(m + 1)/2, a[m], Min[Table[a[i] + a[n - i], {i, 1, Floor[n/2]}]]]]];
    Array[a, 110] (* Jean-François Alcover, Jun 02 2018, from Maple *)

Extensions

I do not know how many of these entries have been proved to be minimal. - N. J. A. Sloane, Apr 15 2006
Corrected and extended by Alois P. Heinz, Jan 05 2011

A133374 Difference between largest number of complexity n in the sense of A005245 and smallest number of complexity n in the sense of A005245.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 7, 10, 14, 31, 40, 61, 103, 154, 217, 319, 550, 709, 1111, 1720, 2233, 3655, 5338, 7310, 11683, 16804, 22477, 35083, 52750, 68653, 106291, 161860, 214597, 320695, 486244, 652549, 981235, 1495324, 1962505, 2984647, 4541086
Offset: 1

Views

Author

Jonathan Vos Post, Oct 28 2007

Keywords

Comments

Complexity of n: number of 1's required to build n using + and *. The complexity of a number has been defined in several different ways by different authors. See the Index to the OEIS for other definitions.

Examples

			n A000792(n)-A005520(n) = a(n)
1 1 - 1 = 0.
2 2 - 2 = 0.
3 3 - 3 = 0.
4 4 - 4 = 0.
5 6 - 5 = 1.
6 9 - 7 = 2.
7 12 - 10 = 2.
8 18 - 11 = 7.
9 27 - 17 = 10.
10 36 - 22 = 14.
11 54 - 23 = 31.
12 81 - 41 = 40.
13 108 - 47 = 61.
14 162 - 59 = 103.
15 243 - 89 = 154.
16 324 - 107 = 217.
17 486 - 167 = 319.
18 729 - 179 = 550.
19 972 - 263 = 709.
20 1458 - 347 = 1111. etc.
		

Crossrefs

Formula

a(n) = A000792(n) - A005520(n).

Extensions

Corrected and extended by Janis Iraids, Apr 20 2011

A210660 Smallest number m such that A210659(m)=n.

Original entry on oeis.org

1, 2, 6, 7, 14, 23, 86, 179, 538, 1439, 9566, 21383, 122847, 777419, 1965374, 6803099, 19860614, 26489579, 269998838, 477028439
Offset: 0

Views

Author

Janis Iraids, Mar 28 2012

Keywords

Comments

The sequence was discovered by Martins Opmanis.

Crossrefs

A319925 Number of integer partitions with no 1's whose parts can be combined together using additions and multiplications to obtain n.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 4, 10, 10, 18, 19, 38, 35, 62, 71, 113, 122, 199, 213, 329
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Comments

All parts of the partition must be used in such a combination.

Examples

			The a(8) = 10 partitions (which are not all partitions of 8):
  (8),
  (42), (62), (53), (44),
  (222), (322), (422), (332),
  (2222).
For example, this list contains (322) because we can write 8 = 3*2+2.
		

Crossrefs

Formula

a(n) >= A001055(n).
a(n) >= A002865(n).

A319975 Smallest number of complexity n with respect to the operations {1, shift, multiply}.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 19, 22, 23, 38, 43, 58, 59, 89, 107, 134, 167, 179, 263, 347, 383, 537, 713, 719, 1103, 1319, 1439, 2099, 2879, 3833, 4283, 5939, 6299, 9059, 12239, 15118, 19079, 23039, 26459, 44879, 49559, 66239, 78839, 98999, 137339
Offset: 1

Views

Author

N. J. A. Sloane, Oct 11 2018

Keywords

Comments

The shift operation here is also sometimes called successor, see A263283.
Note this complexity measure counts both operands (the ones) and operators (the shifts and multiplications), whereas most of the complexity measures in the crossrefs count only operands. However, in the presence of successor it would not make sense to count only operands, since any number can be expressed with a single occurrence of 1. - Glen Whitney, Oct 06 2021

Examples

			1 = 1 has complexity 1
2 = S1 has complexity 2
3 = SS1 has complexity 3
4 = SSS1 has complexity 4
5 = SSSS1 has complexity 5
6 = SSSSS1 has complexity 6
7 = SSSSSS1 has complexity 7
10 = S*SS1SS1 = shift(product of (3 and 3)) has complexity 8
(Note that 8 = *S1SSS1 has complexity 7)
11 = SS*SS1SS1 has complexity 9
14 = SS*SS1SSS1 has complexity 10
		

Crossrefs

Smallest number of complexity n (other definitions): A003037, A005520, A244743, A259466, and A265360.
Other definitions of the complexity of n: A005208, A005245, A025280, and A099053.

Programs

  • Python
    def aupton(nn):
        alst, R, allR = [1], {1: {1}}, {1} # R[n] is set reachable using n ops
        for n in range(2, nn+1):
            R[n]  = set(a+1 for a in R[n-1])
            R[n] |= set(a*b for i in range(1, (n+1)//2) for a in R[i] for b in R[n-1-i])
            alst.append(min(R[n] - allR))
            allR |= R[n]
        return alst
    print(aupton(49)) # Michael S. Branicky, Oct 06 2021

A104233 Positive integers which have a "compact" representation using fewer decimal digits than just writing the number normally.

Original entry on oeis.org

125, 128, 216, 243, 256, 343, 512, 625, 729, 1000, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1080, 1089, 1125, 1152, 1156, 1215, 1225, 1250, 1280, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294
Offset: 1

Views

Author

Jack Brennen, Apr 01 2005

Keywords

Comments

You are allowed to use the following symbols as well:
( ) grouping
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
Note that 1015 to 1033 are all representable in the form 4^5-d or 4^5+d, where d is a single digit.
The complexity of a number has been defined in several different ways by different authors. See the Index to the OEIS for other definitions. - Jonathan Vos Post, Apr 02 2005
From Bernard Schott, Feb 10 2021: (Start)
These numbers are called "entiers compressibles" in French.
There are no 1-digit or 2-digit terms.
The 3-digit terms are all of the form m^q, with 2 <= m, q <= 9.
The 4-digit terms are of the form m^q with m, q > 1, or of the form m^q+-d or m^q*r with m, q, r > 1, d >= 0, and m, q, r, d are all digits (see examples where [...] is a corresponding "compact" representation). (End)

Examples

			From _Bernard Schott_, Feb 10 2021: (Start)
a(1) = 125 = [5^3] = 5*5*5 is the smallest cube.
a(5) = 256 = [2^8] = [4^4] = 16*16 is the smallest square.
a(6) = 343 = [7^3] is the smallest palindrome.
a(15) = 1019 = [4^5-5] is the smallest prime.
6555 = [3^8-5] = [35^2] = T(49) = 49*50/2 is the smallest triangular number.
362880 = 9! = [70*72^2] = [8*(6^6-6^4)] is the smallest factorial.
The smallest zeroless pandigital number 123456789 = [(10^10-91)/81] = [3*(6415^2+38)] is a term. (End)
The largest pandigital number 9876543210 = [(8*10^11+10)/81] = [(8*10^11+10)/9^2] = [5*(15^5+67)*51^2] is also a term. - _Bernard Schott_, Apr 20 2022
		

References

  • R. K. Guy, Unsolved Problems Number Theory, Sect. F26.

Crossrefs

Extensions

More terms from Bernard Schott, Feb 10 2021
Missing terms added by David A. Corneth, Feb 14 2021

A319907 Number of distinct integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 1, 2, 4, 1, 4, 1, 2, 4, 1, 1, 4, 2, 3, 2, 2, 1, 5, 2, 4, 2, 1, 1, 5, 1, 1, 4, 4, 2, 4, 1, 2, 2, 4, 1, 5, 1, 1, 6, 2, 2, 4, 1, 5, 4, 1, 1, 7, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The Heinz number of (3,3,2) is 75 and we have
    3+3+2 = 8,
    3+3*2 = 9,
    3*3+2 = 11,
  (3+3)*2 = 12,
  3*(3+2) = 15,
    3*3*2 = 18,
so a(75) = 6.
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    mexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_?(#>1&),mie___,y_?(#>1&),afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Length[mexos[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]

A347983 Smallest number requiring n 1's to build using +, -, *, and ^.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 13, 21, 39, 41, 43, 115, 173, 276, 413, 823, 1389, 1654
Offset: 1

Views

Author

Glen Whitney, Sep 22 2021

Keywords

Comments

Until n = 10 the terms are equal to A003037(n) where subtraction is not allowed; that is the same value of n at which A255641 and A005520, which also differ only in allowing subtraction, diverge.
The values given are all of the exact ones available from the program posted with A091334, which ignores intermediate results over 2^65, but which nevertheless is provably exact for small values of n up to complexity 19. Running the same program with a larger complexity limit leads to the uncertain (but highly likely correct) values for a(20) through a(26): 3306, 3307, 8871, 22261, 31661, 69467, 155051. (These values were stable for different intermediate-result cutoffs from 2^33 through 2^65, supporting their likely correctness.)

Examples

			a(7) = 11 because 2=1+1, 3=1+1+1, 4=1+1+1+1, 5=1+1+1+1+1, 6=(1+1)(1+1+1), 7=(1+1)(1+1+1)+1, 8=(1+1)^(1+1+1), 9=(1+1+1)^(1+1), and 10=(1+1+1)^(1+1)+1, all requiring fewer than seven ones, whereas a minimal way of expressing 11 is (1+1+1)^(1+1)+1+1 with seven ones. (Subtraction does not actually play a necessary role in a minimal expression until 15=(1+1)^(1+1+1+1)-1, and does not affect the value of a(n) until n = 10 because 23=(1+1+1)(1+1)^(1+1+1)-1 would otherwise be the smallest number requiring ten ones.)
		

Crossrefs

Least inverse (or records) of A091334.
Cf. least inverses A003037, A005520, A255641 of other such "complexity" measures.

A357858 Number of integer partitions that can be obtained by iteratively adding and multiplying together parts of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 6, 2, 3, 1, 7, 1, 3, 3, 11, 1, 7, 1, 8, 3, 3, 1, 14, 3, 3, 4, 8, 1, 11, 1, 19, 3, 3, 3, 18, 1, 3, 3, 18, 1, 12, 1, 8, 8, 3, 1, 27, 3, 10, 3, 8, 1, 16, 3, 19, 3, 3, 1, 25, 1, 3, 8, 33, 3, 12, 1, 8, 3, 12, 1, 35, 1, 3, 11, 8, 3, 12, 1, 34, 9
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The a(n) partitions for n = 1, 4, 8, 9, 12, 16, 20, 24:
  ()  (1)   (1)    (4)   (2)    (1)     (3)    (2)
      (2)   (2)    (22)  (3)    (2)     (4)    (3)
      (11)  (3)          (4)    (3)     (5)    (4)
            (11)         (21)   (4)     (6)    (5)
            (21)         (22)   (11)    (31)   (6)
            (111)        (31)   (21)    (32)   (21)
                         (211)  (22)    (41)   (22)
                                (31)    (311)  (31)
                                (111)          (32)
                                (211)          (41)
                                (1111)         (211)
                                               (221)
                                               (311)
                                               (2111)
		

Crossrefs

The single-part partitions are counted by A319841, with an inverse A319913.
The minimum is A319855, maximum A319856.
A000041 counts integer partitions.
A001222 counts prime indices, distinct A001221.
A056239 adds up prime indices.
A066739 counts representations as a sum of products.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    Table[Length[ReplaceListRepeated[{primeMS[n]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}]],{n,100}]
Previous Showing 21-30 of 31 results. Next