cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-99 of 99 results.

A374829 Decimal expansion of 5*(5 - 3*A136141)/36.

Original entry on oeis.org

3, 7, 2, 2, 9, 5, 8, 3, 2, 3, 4, 0, 3, 6, 3, 1, 4, 1, 1, 6, 7, 6, 2, 4, 6, 6, 9, 5, 0, 4, 4, 6, 8, 4, 4, 6, 2, 6, 9, 9, 6, 8, 8, 8, 7, 7, 4, 3, 1, 1, 6, 9, 2, 4, 3, 1, 4, 8, 5, 8, 5, 8, 3, 0, 4, 5, 8, 1, 5, 6, 8, 2, 5, 7, 3, 9, 3, 0, 5, 2, 8, 6, 8, 0, 3, 6, 1, 6, 2, 8, 2, 6, 8, 0, 6, 0, 7, 7, 0, 1
Offset: 0

Views

Author

Stefano Spezia, Jul 21 2024

Keywords

Comments

Lower bound of Artin's constant A005596.

Examples

			0.3722958323403631411676246695044684462699688877431169243...
		

Crossrefs

Programs

  • PARI
    5*(5 - 3*sumeulerrat(1/(p*(p-1))))/36 \\ Amiram Eldar, Aug 20 2024

Formula

Equals (1/2)*(5/6)*(1 - (A136141 - (1/2 + 1/6))) (see Jakimczuk).
Equals (153/125)*A374830.

A374831 Decimal expansion of Product_{p prime} (1 - (1/(p*(p - 1)))*p^2/(p^2 + 1)).

Original entry on oeis.org

4, 5, 8, 9, 3, 7, 4, 9, 8, 5, 0, 5, 4, 3, 5, 9, 6, 1, 3, 0, 6, 3, 4, 2, 6, 1, 8, 1, 0, 0, 1, 8, 9, 3, 8, 5, 6, 7, 2, 0, 0, 8, 1, 6, 3, 7, 4, 5, 2, 8, 9, 8, 1, 2, 3, 4, 2, 8, 7, 5, 7, 7, 7, 7, 3, 1, 7, 5, 4, 5, 6, 6, 1, 2, 2, 5, 4, 3, 0, 8, 5, 8, 9, 2, 2, 8, 6, 2, 5, 4, 3, 2, 0, 9, 3, 5, 8, 0, 7, 8, 2, 5, 7, 2, 9
Offset: 0

Views

Author

Stefano Spezia, Jul 21 2024

Keywords

Examples

			0.4589374985054359613063426181...
		

Crossrefs

Cf. A005596, A005597, A065414, A065418, A065419, A374830 (lower bound).

Programs

  • PARI
    prodeulerrat(1-p^2/(p*(p-1)*(p^2+1)))

A098937 Number of cyclic numbers, primes with primitive root 10, (A001913) in the first 10^n primes (A000040).

Original entry on oeis.org

5, 38, 387, 3755, 37523, 374126, 3740610, 37393725, 373953691, 3739544360
Offset: 1

Views

Author

Robert G. Wilson v, Oct 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ds, Position[ PowerMod[10, ds, n], 1][[1, 1]]][[ -1]]]; c = 0; k = 4; Do[ While[k <= 10^n, a = f[ Prime[k]]; If[a == 1, c++ ]; k++ ]; Print[c], {n, 7}]

Formula

Lim_{n->oo} a(n)/10^n = Artin's constant (A005596).

Extensions

a(8)-a(10) from Amiram Eldar, Jul 04 2021

A119964 Numerator of the n-th Artin product.

Original entry on oeis.org

1, 5, 19, 779, 84911, 2632241, 713337311, 1163866139, 587752400195, 476667196558145, 2856927907113011, 345688276760674331, 13819099649042566549, 4988694973304366524189, 10780569837310736058772429
Offset: 1

Views

Author

Alexander Adamchuk, Aug 03 2006

Keywords

Comments

Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}].

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]],{n,1,20}]

Formula

a(n) = Numerator[ Product[ 1 - 1/(Prime[k]*(Prime[k]-1)), {k,1,n}]].

A119978 Denominator of the n-th Artin product.

Original entry on oeis.org

2, 12, 48, 2016, 221760, 6918912, 1881944064, 3079544832, 1558249684992, 1265298744213504, 7591792465281024, 919297051250393088, 36771882050015723520, 13282003796465679335424
Offset: 1

Views

Author

Alexander Adamchuk, Aug 03 2006

Keywords

Comments

Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}].

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]],{n,1,20}]

Formula

a(n) = Denominator[ Product[ 1 - 1/(Prime[k]*(Prime[k]-1)), {k,1,n}]].

A271877 Decimal expansion of Matthews' constant C_4, an analog of Artin's constant for primitive roots.

Original entry on oeis.org

0, 2, 6, 1, 0, 7, 4, 4, 6, 3, 1, 4, 9, 1, 7, 7, 0, 8, 0, 8, 3, 2, 4, 9, 3, 9, 4, 3, 1, 3, 8, 2, 1, 4, 6, 7, 2, 5, 5, 6, 2, 6, 6, 7, 3, 6, 4, 0, 5, 5, 3, 8, 0, 4, 5, 2, 7, 6, 1, 1, 7, 3, 3, 7, 1, 0, 2, 4, 9, 8, 2, 0, 0, 5, 6, 5, 8, 7, 0, 1, 4, 0, 9, 9, 6, 8, 4, 7, 0, 4, 8, 1, 5, 1, 1, 5, 2, 2, 6, 0, 3, 8, 6, 9, 4, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 16 2016

Keywords

Examples

			0.026107446314917708083...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 2000; LR = LinearRecurrence[{2, 3, -10, 10, -5, 1}, {0, -8, 6, -40, 35, -194}, 10^4]; r[n_Integer] := LR[[n]]; NSum[r[n] PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2000, WorkingPrecision -> 300, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, 20]& // First // Prepend[#, 0]&
    $MaxExtraPrecision = 1000; Clear[f]; f[p_] := 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)); Do[c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 105]]], {m, 100, 1000, 100}] (* Vaclav Kotesovec, Jun 19 2020 *)
  • PARI
    prodeulerrat(1 - (p^4 - (p - 1)^4)/(p^4*(p - 1))) \\ Amiram Eldar, Mar 16 2021

Formula

C_4 = Product_{p prime} 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)).

Extensions

More digits from Vaclav Kotesovec, Jun 19 2020

A340565 Decimal expansion of the Product_{lesser twin primes p == 5 (mod 6)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 0, 5, 6, 9, 3, 2, 2, 9, 1, 4
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2021

Keywords

Comments

Lesser twin primes A001359 (with the exception of the first prime, 3) are congruent to 5 mod 6: this constant is smaller than A340576.
By extrapolating method most probably the next two decimal digits are 1.056932291(46).
The known high-precision algorithms for Euler products are based on the Dirichlet L function and the Moebius inversion formula (see Mathematica procedure of Jean-François Alcover in A175646).
The constant is between 1.056932291453... and 1.056932291494. - R. J. Mathar, Feb 14 2025

Examples

			1.0569322914...
		

Crossrefs

Extensions

One more digit confirmed by a bracketing of partial products - R. J. Mathar, Feb 14 2025

A373774 a(n) is the number of terms of A000057 in [10^n].

Original entry on oeis.org

3, 7, 38, 249, 1894, 15456, 130824, 11344404, 10007875, 89562047
Offset: 1

Views

Author

Stefano Spezia, Jun 18 2024

Keywords

Crossrefs

Programs

Formula

Conjectured by Kumar under GRH: Limit_{n->oo} a(n)/A006880(n) = (10/19)*A005596 = 0.196818849273264362134067397024429692164015394...

A387331 Least k such that n*k + 1 is a prime > 2 with 2 as a primitive root; a(n) = 0 if no such k exists.

Original entry on oeis.org

2, 1, 4, 1, 2, 2, 4, 0, 2, 1, 6, 1, 4, 2, 4, 0, 26, 1, 22, 3, 10, 3, 6, 0, 4, 2, 6, 1, 2, 2, 12, 0, 2, 13, 6, 1, 4, 11, 14, 0, 2, 5, 4, 15, 4, 3, 14, 0, 4, 2, 12, 1, 2, 3, 12, 0, 26, 1, 12, 1, 58, 6, 6, 0, 2, 1, 4, 9, 2, 3, 12, 0, 4, 2, 38, 25, 50, 7, 4, 0, 2
Offset: 1

Views

Author

Pablo Cadena-Urzúa, Aug 26 2025

Keywords

Comments

If n is a multiple of 8 then a(n) = 0.
Proof: If n = 8*m, then any prime p = n*k+1 satisfies p == 1 (mod 8). Thus 2 is a quadratic residue modulo p, so ord_p(2) | (p-1)/2 and cannot equal p-1.
Computations show that for 1 <= n <= 2000 with 8 !| n, a(n) > 0. This agrees with Artin's conjecture: for each n with 8 !| n there should be infinitely many primes p == 1 (mod n) with 2 as a primitive root.

Examples

			a(1) = 2 since 1*2+1 = 3 is prime and 2 generates (Z/3Z)^*.
a(2) = 1 since 2*1+1 = 3 is prime and 2 is a primitive root modulo 3.
a(3) = 4 since 3*4+1 = 13 is prime and ord_13(2) = 12.
a(8) = 0 because every 8*k+1 == 1 (mod 8).
		

References

  • E. Artin, Collected Papers, Addison-Wesley, 1965.

Crossrefs

Programs

  • Maple
    a := proc(n) local k, p;
      if n mod 8 = 0 then return 0 fi;
      for k from 1 do
        p := n*k+1;
        if isprime(p) and p>2 then
          if order(Mod(2, p)) = p-1 then return k fi;
        fi;
      od;
    end;
  • Mathematica
    a[n_] := If[Mod[n, 8]==0, 0, Module[{k=1, p, fac}, While[True,
      p=n*k+1;
      If[p>2 && PrimeQ[p], fac=FactorInteger[p-1][[All, 1]];
      If[And@@(PowerMod[2, (p-1)/#, p]!=1&/@fac), Return[k]]];
      k++]]]
  • Python
    from sympy import isprime, factorint
    def is_primitive_root_base2(p):
        phi = p-1
        return all(pow(2, phi//q, p)!=1 for q in factorint(phi))
    def a(n, kmax=10**7):
        if n%8==0: return 0
        for k in range(1, kmax+1):
            p = n*k+1
            if p>2 and isprime(p) and is_primitive_root_base2(p):
                return k
        return 0

Formula

a(n) = 0 if n == 0 (mod 8).
Otherwise, a(n) = min { k >= 1 : p = n*k+1 is prime > 2 and ord_p(2) = p-1 }.
Previous Showing 91-99 of 99 results.