cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A188107 Triangle T(n,k) with the coefficient [x^k] of 1/(1 - x - 2*x^2 + x^3)^(n-k+1) in row n, column k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 4, 1, 4, 12, 14, 9, 1, 5, 18, 31, 35, 14, 1, 6, 25, 56, 87, 70, 28, 1, 7, 33, 90, 175, 207, 154, 47, 1, 8, 42, 134, 310, 476, 504, 306, 89, 1, 9, 52, 189, 504, 941, 1274, 1137, 633, 155, 1, 10, 63, 256, 770, 1680, 2745, 3188, 2571
Offset: 0

Views

Author

L. Edson Jeffery, Mar 20 2011

Keywords

Comments

Modified versions of the generating function for the diagonal, A006053, are related to rhombus substitution tilings (see A187065, A187066 and A187067).

Examples

			The triangle starts in row n=0 as
  1;
  1,   1;
  1,   2,   3;
  1,   3,   7,   4;
  1,   4,  12,  14,   9;
  1,   5,  18,  31,  35,  14;
  1,   6,  25,  56,  87,  70,  28;
  1,   7,  33,  90, 175, 207, 154,  47;
  1,   8,  42, 134, 310, 476, 504, 306,  89;
		

Crossrefs

Programs

  • Maple
    A188107 := proc(n,k) 1/(1-x-2*x^2+x^3)^(n-k+1) ; coeftayl(%,x=0,k) ; end proc:
    seq(seq(A188107(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Mar 22 2011

Formula

Sum_{k=0..n} T(n,k) = A001654(n+1).
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-2) - T(n-3,k-3). - Philippe Deléham, Feb 24 2012

A099918 A Chebyshev transform related to the 7th cyclotomic polynomial.

Original entry on oeis.org

1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1, -1, 0, 1, -1, 2, -2, 1
Offset: 0

Views

Author

Paul Barry, Oct 30 2004

Keywords

Comments

The g.f. is a Chebyshev transform of 1/(1+x-2x^2-x^3) under the Chebyshev mapping g(x)->(1/(1+x^2))g(x/(1+x^2)). The denominator is the 7th cyclotomic polynomial. The inverse of the 7 cyclotomic polynomial A014016 is given by sum{k=0..n, A099918(n-k)(k/2+1)(-1)^(k/2)(1+(-1)^k)/2}.

Crossrefs

Cf. A099860.

Programs

  • Mathematica
    LinearRecurrence[{-1,-1,-1,-1,-1,-1},{1,-1,2,-2,1,-1},90] (* Harvey P. Dale, May 25 2019 *)

Formula

G.f.: (1+x^2)^2/(1+x+x^2+x^3+x^4+x^5+x^6).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)^(-1)^k*b(n-2k), where b(n)=A094790(n/2+1)(1+(-1)^n)/2+A094789((n+1)/2)(1-(-1)^n)/2=(-1)^n*A006053(n+2).

A122161 Expansion of x*(1 - 3*x + x^2) / (1 - x - 2*x^2 + x^3).

Original entry on oeis.org

1, -2, 1, -4, 0, -9, -5, -23, -24, -65, -90, -196, -311, -613, -1039, -1954, -3419, -6288, -11172, -20329, -36385, -65871, -118312, -213669, -384422, -693448, -1248623, -2251097, -4054895, -7308466, -13167159, -23729196, -42755048, -77046281, -138827181, -250164695, -450772776
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 17 2006

Keywords

Programs

  • Mathematica
    M = {{0, -1, -1}, {-1, 0, 0}, {-1, 0, 1}}; v[1] = {1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 50}]
  • PARI
    Vec( x*(1 - 3*x + x^2) / (1 - x - 2*x^2 + x^3) + O(x^50)) \\ Michel Marcus, Sep 19 2017

Formula

a(n) = A006053(n+1) - 3*A006053(n) + A006053(n-1). - R. J. Mathar, Nov 07 2011

A215139 a(n) = (a(n-1) - a(n-3))*7^((1+(-1)^n)/2) with a(6)=5, a(7)=4, a(8)=22.

Original entry on oeis.org

5, 4, 22, 17, 91, 69, 364, 273, 1428, 1064, 5537, 4109, 21315, 15778, 81683, 60368, 312130, 230447, 1190553, 878423, 4535832, 3345279, 17267992, 12732160, 65708167, 48440175, 249956105, 184247938, 950654341, 700698236, 3615152086, 2664497745, 13746596563, 10131444477
Offset: 6

Views

Author

Roman Witula, Aug 04 2012

Keywords

Comments

The Ramanujan-type sequence the number 9 for the argument 2*Pi/7. The sequence is connecting with the following decomposition: (s(4)/s(1))^(1/3)*s(1)^n + (s(1)/s(2))^(1/3)*s(2)^n + (s(2)/s(4))^(1/3)*s(4)^n = x(n)*(4-3*7^(1/3))^(1/3) + y(n)*(11-3*49^(1/3))^(1/3), where s(j) := sin(2*Pi*j/7), x(0)=1, x(1)=-7^(1/6)/2, x(2)=y(0)=y(1)=0, y(2)=7^(1/3)/4 and X(n)=sqrt(7)*(X(n-1)-X(n-3)) for every n=3,4,..., and X=x or X=y. It could be deduced the formula 4*y(n) = a(n)*7^(1/3 + (3+(-1)^n)/4), which implies a(0)=0, a(1)= 0, a(2)= 1/7, a(3)=1/7, a(4)=1, a(5)=6/7, i.e., A163260(n)=7*a(n) for every n=0,1,...,5. The sequence a(n) is discussed in third Witula paper.

Examples

			From values of x(2),y(2) and the identity 2*sin(t)^2=1-cos(2*t) we obtain (s(4)/s(1))^(1/3)*c(1) + (s(1)/s(2))^(1/3)*c(4) + (s(2)/s(4))^(1/3)*c(1) = (4-3*7^(1/3))^(1/3) - (1/2)*(7*(11-3*49^(1/3)))^(1/3), where c(j):=cos(2*Pi*j/7). Further, from values of x(1),x(3),y(1),y(3) and the identity 4*sin(t)^3=3*sin(t)-sin(3*t) we obtain (s(4)/s(1))^(1/3)*s(4) + (s(1)/s(2))^(1/3)*s(1) + (s(2)/s(4))^(1/3)*s(2) = (-3*7^(1/6)/2 +4*7^(1/2))*(4-3*7^(1/3))^(1/3) - 7^(5/6)*(11-3*49^(1/3))^(1/3).
		

References

  • R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Magma
    I:=[5,4,22,17,91,69]; [n le 6 select I[n] else 7*Self(n-2) - 14*Self(n-4) + 7*Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    LinearRecurrence[{0,7,0,-14,0,7}, {5,4,22,17,91,69}, {1,50}] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    Vec(-x*(1+x)*(6*x^4+x^3-12*x^2-x+5)/(-1+7*x^2-14*x^4+7*x^6) + O(x^50)) \\ Michel Marcus, Apr 20 2016
    

Formula

G.f.: -x*(1+x)*(6*x^4+x^3-12*x^2-x+5) / ( -1+7*x^2-14*x^4+7*x^6 ). - R. J. Mathar, Sep 14 2012

Extensions

More terms from Michel Marcus, Apr 20 2016

A265755 a(n) = a(n-1) + a(n-2) if n is even and a(n) = a(n-3) + a(n-4) if n is odd, with a(0) = a(1) = a(2) = 0 and a(3) = 1.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 2, 3, 1, 4, 5, 9, 5, 14, 14, 28, 19, 47, 42, 89, 66, 155, 131, 286, 221, 507, 417, 924, 728, 1652, 1341, 2993, 2380, 5373, 4334, 9707, 7753, 17460, 14041, 31501, 25213, 56714, 45542, 102256, 81927, 184183, 147798, 331981, 266110, 598091, 479779, 1077870, 864201, 1942071, 1557649
Offset: 0

Views

Author

Nicholas Drozd, Dec 15 2015

Keywords

Examples

			a(8) = a(7) + a(6)
     = a(4) + a(3) + a(5) + a(4)
     = (a(3) + a(2)) + a(3) + (a(2) + a(1)) + (a(3) + a(2))
     = 1 + 1 + 0 + 1
     = 3
		

Crossrefs

Interleaves A006053 and A052547, with an extra leading 0.
A187066 with even values and odd values swapped and an extra leading 0.

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 0; a[3] = 1; a[n_] := a[n] = If[EvenQ@ n, a[n - 1] + a[n - 2], a[n - 3] + a[n - 4]]; Table[a@ n, {n, 0, 55}] (* Michael De Vlieger, Dec 15 2015 *)
    nxt[{n_,a_,b_,c_,d_}]:={n+1,b,c,d,If[OddQ[n],c+d,a+b]}; NestList[nxt,{1,0,0,0,1},60][[All,2]] (* or *) LinearRecurrence[{0,1,0,2,0,-1},{0,0,0,1,1,0},60] (* Harvey P. Dale, Nov 10 2017 *)
  • PARI
    concat(vector(3), Vec(x^3*(1+x-x^2)/(1-x^2-2*x^4+x^6) + O(x^70))) \\ Colin Barker, Dec 16 2015

Formula

From Colin Barker, Dec 16 2015: (Start)
a(n) = a(n-2) + 2*a(n-4) - a(n-6) for n>5.
G.f.: x^3*(1+x-x^2) / (1-x^2-2*x^4+x^6).
(End)

Extensions

More terms from Michael De Vlieger, Dec 15 2015

A122500 Semiprimes in A006054.

Original entry on oeis.org

25, 183922, 413269, 2086561, 268550439, 77664004259, 1286498670037058, 835992504648428541, 69918194872608910320341, 157104757807495406675035, 353011186440414668176111, 13139449230370726052061293111
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    semiPrimeQ[n_Integer] := Plus @@ Last /@ FactorInteger[n] == 2; s = CoefficientList[ Series[x/(x^3 - x^2 - 2*x + 1), {x, 0, 100}], x]; Select[s, SemiprimeQ@# &]
    Select[LinearRecurrence[{2,1,-1},{0,0,1},100],PrimeOmega[#]==2&] (* Harvey P. Dale, Aug 21 2013 *)

Extensions

Edited by N. J. A. Sloane, Sep 17 2006
More terms from Robert G. Wilson v, Sep 18 2006

A122504 a(n) = -a(n-6) + 3*a(n-5) + a(n-4) - 7*a(n-3) + a(n-2) + 3*a(n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, -3, -13, -39, -107, -273, -675, -1624, -3847, -8995, -20851, -47995, -109915, -250695, -570024, -1292915, -2926953, -6616051, -14936895, -33690357, -75931283, -171029936, -385046687, -866536007, -1949510615, -4384874471, -9860587191, -22170707871, -49842661456
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 15 2006

Keywords

Comments

Original name started "Bi_Steinbach heptagon recursion".

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 1; a[5] = 1; a[n_] := a[n] = -a[n - 6] + 3 a[n - 5] + a[n - 4] - 7 a[n - 3] + a[n - 2] + 3 a[n - 1] Table[a[n], {n, 0, 30}]
    M = {{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}, {-1, 3, 1, -7, 1, 3}} v[1] = {1, 1, 1, 1, 1, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    LinearRecurrence[{3,1,-7,1,3,-1},{1,1,1,1,1,1},40] (* or *) Rest[ CoefficientList[ Series[x(1-x-3x^2)(1-x-x^2)/((1-2x-x^2+x^3)(1-x-2x^2+x^3)),{x,0,40}],x]] (* Harvey P. Dale, Jun 24 2011 *)

Formula

O.g.f.: x*(1-x-3*x^2)*(1-x-x^2)/((1-2*x-x^2+x^3)*(1-x-2*x^2+x^3)). - R. J. Mathar, Aug 22 2008

A122517 G.f.: 1/(1 - x^3 - 2 x^4 + x^5).

Original entry on oeis.org

1, 0, 0, 1, 2, -1, 1, 4, 2, -3, 7, 9, -3, -1, 26, 8, -16, 27, 61, -26, -13, 131, 69, -126, 131, 344, -119, -190, 732, 438, -772, 471, 2092, -628, -1511, 3806, 3085, -4859, 1412, 12208, -2495, -11391, 19891, 20509, -28589, -396, 71682, -7462, -78083, 99479
Offset: 0

Views

Author

Roger L. Bagula, Sep 16 2006

Keywords

Comments

Based on characteristic polynomial x^5 - x^2 - 2x + 1.

Crossrefs

Programs

  • Mathematica
    p[x_] := x^5 - x^2 - 2x + 1 q[x_] := ExpandAll[x^5*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 50}], n], {n, 0, 50}]

Extensions

Edited by N. J. A. Sloane, Oct 01 2006

A122518 G.f.: 1/(1 -2 x^3 - x^4 + x^5).

Original entry on oeis.org

1, 0, 0, 2, 1, -1, 4, 4, -3, 6, 13, -6, 5, 35, -5, -9, 81, 20, -58, 158, 130, -177, 238, 476, -382, 169, 1367, -526, -520, 3285, 146, -2933, 6576, 4097, -9005, 10073, 17703, -20489, 7044, 54484, -33348, -24104, 136501, -19256, -136040, 282246, 122093, -427837, 447708, 662472
Offset: 0

Views

Author

Roger L. Bagula, Sep 16 2006

Keywords

Comments

Based on characteristic polynomial x^5 - 2x^2 - x + 1.

Crossrefs

Programs

  • Mathematica
    p[x_] := x^5 - 2x^2 - x + 1 q[x_] := ExpandAll[x^5*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 50}], n], {n, 0, 50}]

Extensions

Edited by N. J. A. Sloane, Oct 01 2006

A218664 Coefficients of cubic polynomials p(x+n), where p(x) = x^3 + x^2 - 2*x - 1.

Original entry on oeis.org

1, 1, -2, -1, 1, 4, 3, -1, 1, 7, 14, 7, 1, 10, 31, 29, 1, 13, 54, 71, 1, 16, 83, 139, 1, 19, 118, 239, 1, 22, 159, 377, 1, 25, 206, 559, 1, 28, 259, 791, 1, 31, 318, 1079, 1, 34, 383, 1429, 1, 37, 454, 1847, 1, 40, 531, 2339, 1, 43, 614, 2911, 1, 46, 703, 3569, 1, 49, 798, 4319
Offset: 0

Views

Author

Roman Witula, Nov 04 2012

Keywords

Comments

We have p(x) = (x - c(1))*(x - c(2))*(x - c(4)), where c(j) := 2*cos(2*Pi*j/7). We note that c(4) = c(3) = -c(1/2), c(1) = s(3) and c(2) = -s(1), where s(j) := 2*sin(Pi*j/14). Moreover we obtain -p(-x) = x^3 - x^2 - 2*x + 1 = (x + c(1))*(x + c(2))*(x + c(4)), q(x) := -x^3*p(1/x) = x^3 + 2*x^2 + x - 1 = (x - c(1)^(-1))*(x - c(2)^(-1))*(x - c(4)^(-1)), and -q(-x) = x^3 - 2*x^2 + x + 1 = (x + c(1)^(-1))*(x + c(2)^(-1))*(x + c(4)^(-1)).
We also have p(x+2) = x^3 + 7*x^2 + 14*x + 7 = (x + s(2)^2)*(x + s(4)^2)*(x + s(6)^2). The polynomial -p(-x-2) = x^3 - 7*x^2 + 14*x - 7 = (x - s(2)^2)*(x - s(4)^2)*(x - s(6)^2) is known as Johannes Kepler's cubic polynomial (see Witula's book).
Let us set r(x) := p(x+1). It can be verified that -x^3*r(1/x) = x^3 - 3*x^2 - 4*x - 1 = (x - c(1)/c(4))*(x - c(4)/c(2))*(x - c(2)/c(1)); for example, we have c(1)^3 + c(1)^2 - 2*c(1) - 1 = 0 which implies that c(1)^2 + 2*c(1) = 1/(c(1) - 1), and then c(1)^2 + 2*c(1) = c(4)/c(2) since c(4)/c(2) = (c(1)^4 - 4*c(1)^2 + 2)/(c(1)^2 - 2).
The polynomials p(x+n) and the ones obtained as above (i.e., after simple algebraic transformations) are the characteristic polynomials of many sequences in the OEIS; see crossrefs.

References

  • R. Witula, Complex Numbers, Polynomials and Partial Fraction Decomposition, Part 3, Wydawnictwo Politechniki Slaskiej, Gliwice 2010 (Silesian Technical University publishers).

Crossrefs

Formula

We have a(4*k) = 1, a(4*k + 1) = 3*k + 1, a(4*k + 2) = 3*k^2 + 2*k - 2, a(4*k + 3) = k^3 + k^2 - 2*k - 1. Further, the following relations hold true: b(k+1) = b(k) + 3, c(k+1) = 2*b(k) -2*c(k) + 3, d(k+1) = b(k) - 2*c(k) - d(k) + 1, where p(x + k) = x^3 + b(k)*x^2 + c(k)*x + d(k).
Empirical g.f.: -(x^15 - x^14 - 2*x^13 + x^12 - 5*x^11 + 10*x^10 + 3*x^9 - 3*x^8 - 3*x^7 - 11*x^6 + 3*x^4 + x^3 + 2*x^2 - x - 1) / ((x-1)^4*(x+1)^4*(x^2+1)^4). - Colin Barker, May 17 2013
Previous Showing 31-40 of 40 results.