cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A228365 Inverse binomial transform of the Galois numbers G_(n)^{(3)} (A006117).

Original entry on oeis.org

1, 1, 3, 15, 129, 1833, 43347, 1705623, 112931553, 12639552945, 2413134909507, 788041911546303, 442817851480763169, 428369525248261655193, 716160018275094098267859, 2067365673240491189928496263, 10333740296321620864171488891201, 89302459853776656431139970491341025
Offset: 0

Views

Author

R. J. Mathar, Aug 21 2013

Keywords

Comments

Analog of the inverse binomial transform of G_(n)^{(q)} with q=2, A135922.
A 2-multigraph is a labeled graph with no loops but with up to 2 edges joining any pair of vertices. a(n) is the number of 2-multigraphs on [n] such that no path of length two has vertices i,j,k (in that order) with iGeoffrey Critzer, May 05 2025

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (3^(i+k)-1)/(3^i-1), i=1..n-k), k=0..n)
        end:
    a:= proc(n) option remember;
          add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    seq(a(n), n=0..19);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    Table[SeriesCoefficient[Sum[x^n/Product[(1-(3^k-1)*x),{k,0,n}],{n,0,nn}],{x,0,nn}] ,{nn,0,20}] (* Vaclav Kotesovec, Aug 23 2013 *)

Formula

a(n) ~ c * 3^(n^2/4), where c = EllipticTheta[3,0,1/3]/QPochhammer[1/3,1/3] = 3.019783845699... if n is even and c = EllipticTheta[2,0,1/3]/QPochhammer[1/3,1/3] = 3.01826904637117... if n is odd. - Vaclav Kotesovec, Aug 23 2013

A293845 Triangle read by rows: T(n,k) is the number of chains of length k in the partially ordered (by subspace inclusion) set of all subspaces of GF(2)^n, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 2, 1, 5, 7, 3, 16, 50, 56, 21, 67, 446, 1010, 945, 315, 374, 5395, 22692, 40455, 32550, 9765, 2825, 92881, 704601, 2167179, 3193155, 2255715, 615195, 29212, 2350136, 32061404, 162602418, 394534644, 496062000, 312519060, 78129765, 417199, 89342600, 2220570872, 18194735010, 68980503390, 138302085600, 151794972000
Offset: 0

Views

Author

Geoffrey Critzer, Oct 17 2017

Keywords

Examples

			Triangle begins:
1;
2, 1;
5, 7, 3;
16, 50, 56, 21;
67, 446, 1010, 945, 315;
374, 5395, 22692, 40455, 32550, 9765;
...
		

Crossrefs

Cf. A289546, A293844 (row sums), A005329 (main diagonal), A006116 (column k = 0).

Programs

  • Mathematica
    nn = 10; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}]; Grid[Map[Select[#, # > 0 &] &,
      Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,
         nn}] CoefficientList[Series[ eq[z]^2/(1 - u (eq[z] - 1)) /. q -> 2, {z, 0, nn}], {z, u}]]]

Formula

T(n,k)/A005329(n) is the coefficient of y^k*x^n in eq(x)^2/(1 - y (eq(x) - 1)) where eq(x) is the q-exponential function.

A382223 Rectangular array read by antidiagonals: T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] with the property that for all u,v in [n], u->v implies u=0, k>=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 16, 12, 4, 1, 0, 1, 67, 66, 22, 5, 1, 0, 1, 374, 513, 172, 35, 6, 1, 0, 1, 2825, 5769, 1969, 355, 51, 7, 1, 0, 1, 29212, 95706, 33856, 5380, 636, 70, 8, 1, 0, 1, 417199, 2379348, 893188, 125090, 12006, 1036, 92, 9, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 23 2025

Keywords

Examples

			 1, 1,   1,    1,     1,      1,      1,...
 0, 1,   2,    3,     4,      5,      6,...
 0, 1,   5,   12,    22,     35,     51,...
 0, 1,  16,   66,   172,    355,    636,...
 0, 1,  67,  513,  1969,   5380,  12006,...
 0, 1, 374, 5769, 33856, 125090, 352476,...
		

Crossrefs

Cf. A006116 column k=2, A289539 column k=3, A005329, A382363.

Programs

  • Mathematica
    nn = 6; B[n_] := QFactorial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; zetapolys = Drop[Map[Expand[InterpolatingPolynomial[#, x]] &,Transpose[Table[Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^k, {z, 0, nn}], z], {k, 1, nn}]]], -1];Table[zetapolys /. x -> i, {i, 0, nn}] // Transpose // Grid

Formula

Sum_{n>=0} T(n,k)/A005329(n) = e(x)^k, where e(x) = Sum_{n>=0}x^n/A005329(n).

A289383 Total number of nonzero vectors over all subspaces of an n-dimensional vector space over the field with two elements.

Original entry on oeis.org

0, 1, 6, 35, 240, 2077, 23562, 358775, 7449060, 213188689, 8473977534, 470309723435, 36582636406680, 3998655357260293, 615328930033081458, 133485330929459963615, 40859530900982506959180, 17659495180812130332490681, 10781678259164073608877557286, 9301770545157096607562560360595
Offset: 0

Views

Author

Geoffrey Critzer, Jul 04 2017

Keywords

Comments

The q-analog of A001787.

Crossrefs

Programs

  • Mathematica
    nn = 20; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[z eq[z]^2 /. q -> 2, {z, 0, nn}], z]

Formula

a(n) = Sum_{k=1..n} A022166(n,k)*(2^k - 1).
a(n)/[n]_q! is the coefficient of x^n in the expansion of x*exp_q(x)^2 when q->2 and where exp_q(x) is the q exponential function and [n]_q! is the q-factorial of n.
a(n) = (2^n - 1)*A006116(n-1).

A329154 Coefficients of polynomials related to the sum of Gaussian binomial coefficients for q = 2. Triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 26, 24, 12, 4, 1, 158, 130, 60, 20, 5, 1, 1330, 948, 390, 120, 30, 6, 1, 15414, 9310, 3318, 910, 210, 42, 7, 1, 245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1, 5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of n X n matrices over F_2 in reduced row echelon form having exactly k zero-columns. Equivalently, T(n,k) is the number of subspaces of F_2^n that "involve" n-k coordinates. (For the definition of "involve" see the link below: D. E. Knuth, Letter to Daniel Ullman and others). - Geoffrey Critzer, May 03 2025

Examples

			Triangle starts:
[0] [1]
[1] [1,       1]
[2] [2,       2,       1]
[3] [6,       6,       3,      1]
[4] [26,      24,      12,     4,      1]
[5] [158,     130,     60,     20,     5,     1]
[6] [1330,    948,     390,    120,    30,    6,    1]
[7] [15414,   9310,    3318,   910,    210,   42,   7,   1]
[8] [245578,  123312,  37240,  8848,   1820,  336,  56,  8,  1]
[9] [5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1]
		

Crossrefs

Row sums: A006116, first column: A135922.

Programs

  • Maple
    T := (n, k) -> local j, m; pochhammer(n - k + 1, k)*add((-1)^j*add(product((2^(i + m) - 1)/(2^i - 1), i = 1..n-k-m-j), m = 0..n-k-j)*binomial(n - k, j), j = 0..n-k) / k!: for n from 0 to 9 do seq(T(n,k), k=0..n) od;  # Peter Luschny, Oct 08 2023
  • Mathematica
    T[n_,k_]:= (Pochhammer[n-k+1,k]/(k!)*Sum[(-1)^j*Sum[Product[(2^(i+m)-1)/(2^i-1),{i,1,n-k-m-j}],{m,0,n-k-j}]*Binomial[n-k,j],{j,0,n-k}]); Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)
  • Sage
    R = PolynomialRing(QQ, 'x')
    x = R.gen()
    @cached_function
    def P(n, k, x):
        if k < 0 or n < 0: return R(0)
        if k == 0: return R(1)
        return x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2)
    def row(n): return sum(P(n-k, k, x) for k in range(n+1)).coefficients()
    print(flatten([row(n) for n in range(10)]))

Formula

Let P(n, k, x) = x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2) and Q(n, x) = Sum_{k=0..n} P(n-k, k, x) then T(n, k) = [x^k] Q(n, x).
T(n, k) = (1/k!) * Pochhammer(n-k+1, k) * Sum_{j=0..n-k}((-1)^j*Sum_{m=0..n-k-j} (Product_{i=1..n-k-m-j} ((2^(i+m)-1)/(2^i-1))) * binomial(n-k, j)). - Detlef Meya, Oct 07 2023
T(n,k) = binomial(n,k)*A135922(n-k). (see Stanley-Locke link above) - Geoffrey Critzer, May 03 2025
E.g.f.: exp(y x)*f(x) where f(x) is the e.g.f. for A135922. - Geoffrey Critzer, May 03 2025

A370887 Square array read by descending antidiagonals: T(n,k) is the number of subgroups of the elementary abelian group of order A000040(k)^n for n >= 0 and k >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 5, 1, 2, 6, 16, 1, 2, 8, 28, 67, 1, 2, 10, 64, 212, 374, 1, 2, 14, 116, 1120, 2664, 2825, 1, 2, 16, 268, 3652, 42176, 56632, 29212, 1, 2, 20, 368, 19156, 285704, 3583232, 2052656, 417199, 1, 2, 22, 616, 35872, 3961832, 61946920, 666124288
Offset: 0

Views

Author

Miles Englezou, Mar 05 2024

Keywords

Comments

As an elementary abelian group G of order p^n is isomorphic to an n-dimensional vector space V over the finite field of characteristic p, T(n,k) is also the number of subspaces of V.
V defined as above, T(n,k) is also the sum of the Gaussian binomial coefficients (n,r), 0 <= r < n, for a prime q number, since (n,r) counts the number of r-dimensional subspaces of V. The sequences of these sums for a fixed prime q number correspond to the columns of T(n,k).

Examples

			T(1,1) = 2 since the elementary abelian of order A000040(1)^1 = 2^1 has 2 subgroups.
T(3,5) = 2*T(2,5) + (A000040(5)^(3-1)-1)*T(1,5) = 2*14 + ((11^2)-1)*2 = 268.
First 6 rows and 8 columns:
n\k|   1     2       3        4          5           6            7            8
----+---------------------------------------------------------------------------
 0 |   1     1       1        1          1           1            1            1
 1 |   2     2       2        2          2           2            2            2
 2 |   5     6       8       10         14          16           20           22
 3 |  16    28      64      116        268         368          616          764
 4 |  67   212    1120     3652      19156       35872        99472       152404
 5 | 374  2664   42176   285704    3961832    10581824     51647264     99869288
 6 |2825 56632 3583232 61946920 3092997464 13340150272 141339210560 377566978168
		

Crossrefs

Programs

  • GAP
    # produces an array A of the first (7(7+1))/2 terms. However computation quickly becomes expensive for values > 7.
    LoadPackage("sonata");    # sonata package needs to be loaded to call function Subgroups. Sonata is included in latest versions of GAP.
    N:=[1..7];; R:=[];; S:=[];;
    for i in N do
        for j in N do
            if j>i then
                break;
            fi;
            Add(R,j);
        od;
        Add(S,R);
        R:=[];;
    od;
    A:=[];;
    for n in N do
        L:=List([1..Length(S[n])],m->Size(Subgroups(ElementaryAbelianGroup( Primes[Reversed(S[n])[m]]^(S[n][m]-1)))));
        Add(A,L);
    od;
    A:=Flat(A);
  • PARI
    T(n,k)=polcoeff(sum(i=0,n,x^i/prod(j=0,i,1-primes(k)[k]^j*x+x*O(x^n))),n)
    

Formula

T(n,k) = 2*T(n-1,k) + (A000040(k)^(n-1)-1)*T(n-2,k).
T(0,k) = 1.
T(1,k) = 2.
T(2,k) = A000040(k) + 3 = A113935(k).
T(3,k) = 2*(A000040(k)^3 + (A000040(k)-2))/(A000040(k)-1).
Previous Showing 21-26 of 26 results.