A228365
Inverse binomial transform of the Galois numbers G_(n)^{(3)} (A006117).
Original entry on oeis.org
1, 1, 3, 15, 129, 1833, 43347, 1705623, 112931553, 12639552945, 2413134909507, 788041911546303, 442817851480763169, 428369525248261655193, 716160018275094098267859, 2067365673240491189928496263, 10333740296321620864171488891201, 89302459853776656431139970491341025
Offset: 0
-
b:= proc(n) option remember; add(mul(
(3^(i+k)-1)/(3^i-1), i=1..n-k), k=0..n)
end:
a:= proc(n) option remember;
add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
end:
seq(a(n), n=0..19); # Alois P. Heinz, Sep 24 2019
-
Table[SeriesCoefficient[Sum[x^n/Product[(1-(3^k-1)*x),{k,0,n}],{n,0,nn}],{x,0,nn}] ,{nn,0,20}] (* Vaclav Kotesovec, Aug 23 2013 *)
A293845
Triangle read by rows: T(n,k) is the number of chains of length k in the partially ordered (by subspace inclusion) set of all subspaces of GF(2)^n, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 2, 1, 5, 7, 3, 16, 50, 56, 21, 67, 446, 1010, 945, 315, 374, 5395, 22692, 40455, 32550, 9765, 2825, 92881, 704601, 2167179, 3193155, 2255715, 615195, 29212, 2350136, 32061404, 162602418, 394534644, 496062000, 312519060, 78129765, 417199, 89342600, 2220570872, 18194735010, 68980503390, 138302085600, 151794972000
Offset: 0
Triangle begins:
1;
2, 1;
5, 7, 3;
16, 50, 56, 21;
67, 446, 1010, 945, 315;
374, 5395, 22692, 40455, 32550, 9765;
...
-
nn = 10; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}]; Grid[Map[Select[#, # > 0 &] &,
Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,
nn}] CoefficientList[Series[ eq[z]^2/(1 - u (eq[z] - 1)) /. q -> 2, {z, 0, nn}], {z, u}]]]
A382223
Rectangular array read by antidiagonals: T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] with the property that for all u,v in [n], u->v implies u=0, k>=0.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 16, 12, 4, 1, 0, 1, 67, 66, 22, 5, 1, 0, 1, 374, 513, 172, 35, 6, 1, 0, 1, 2825, 5769, 1969, 355, 51, 7, 1, 0, 1, 29212, 95706, 33856, 5380, 636, 70, 8, 1, 0, 1, 417199, 2379348, 893188, 125090, 12006, 1036, 92, 9, 1
Offset: 0
1, 1, 1, 1, 1, 1, 1,...
0, 1, 2, 3, 4, 5, 6,...
0, 1, 5, 12, 22, 35, 51,...
0, 1, 16, 66, 172, 355, 636,...
0, 1, 67, 513, 1969, 5380, 12006,...
0, 1, 374, 5769, 33856, 125090, 352476,...
- Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, Discrete Mathematics, Vol. 343, No. 11 (2020), 112041; arXiv preprint, arXiv:1909.01550 [math.CO], 2019-2020. See Table 2.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
-
nn = 6; B[n_] := QFactorial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; zetapolys = Drop[Map[Expand[InterpolatingPolynomial[#, x]] &,Transpose[Table[Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^k, {z, 0, nn}], z], {k, 1, nn}]]], -1];Table[zetapolys /. x -> i, {i, 0, nn}] // Transpose // Grid
A289383
Total number of nonzero vectors over all subspaces of an n-dimensional vector space over the field with two elements.
Original entry on oeis.org
0, 1, 6, 35, 240, 2077, 23562, 358775, 7449060, 213188689, 8473977534, 470309723435, 36582636406680, 3998655357260293, 615328930033081458, 133485330929459963615, 40859530900982506959180, 17659495180812130332490681, 10781678259164073608877557286, 9301770545157096607562560360595
Offset: 0
-
nn = 20; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[z eq[z]^2 /. q -> 2, {z, 0, nn}], z]
A329154
Coefficients of polynomials related to the sum of Gaussian binomial coefficients for q = 2. Triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 26, 24, 12, 4, 1, 158, 130, 60, 20, 5, 1, 1330, 948, 390, 120, 30, 6, 1, 15414, 9310, 3318, 910, 210, 42, 7, 1, 245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1, 5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [1, 1]
[2] [2, 2, 1]
[3] [6, 6, 3, 1]
[4] [26, 24, 12, 4, 1]
[5] [158, 130, 60, 20, 5, 1]
[6] [1330, 948, 390, 120, 30, 6, 1]
[7] [15414, 9310, 3318, 910, 210, 42, 7, 1]
[8] [245578, 123312, 37240, 8848, 1820, 336, 56, 8, 1]
[9] [5382862, 2210202, 554904, 111720, 19908, 3276, 504, 72, 9, 1]
-
T := (n, k) -> local j, m; pochhammer(n - k + 1, k)*add((-1)^j*add(product((2^(i + m) - 1)/(2^i - 1), i = 1..n-k-m-j), m = 0..n-k-j)*binomial(n - k, j), j = 0..n-k) / k!: for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Oct 08 2023
-
T[n_,k_]:= (Pochhammer[n-k+1,k]/(k!)*Sum[(-1)^j*Sum[Product[(2^(i+m)-1)/(2^i-1),{i,1,n-k-m-j}],{m,0,n-k-j}]*Binomial[n-k,j],{j,0,n-k}]); Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)
-
R = PolynomialRing(QQ, 'x')
x = R.gen()
@cached_function
def P(n, k, x):
if k < 0 or n < 0: return R(0)
if k == 0: return R(1)
return x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2)
def row(n): return sum(P(n-k, k, x) for k in range(n+1)).coefficients()
print(flatten([row(n) for n in range(10)]))
A370887
Square array read by descending antidiagonals: T(n,k) is the number of subgroups of the elementary abelian group of order A000040(k)^n for n >= 0 and k >= 1.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 1, 2, 6, 16, 1, 2, 8, 28, 67, 1, 2, 10, 64, 212, 374, 1, 2, 14, 116, 1120, 2664, 2825, 1, 2, 16, 268, 3652, 42176, 56632, 29212, 1, 2, 20, 368, 19156, 285704, 3583232, 2052656, 417199, 1, 2, 22, 616, 35872, 3961832, 61946920, 666124288
Offset: 0
T(1,1) = 2 since the elementary abelian of order A000040(1)^1 = 2^1 has 2 subgroups.
T(3,5) = 2*T(2,5) + (A000040(5)^(3-1)-1)*T(1,5) = 2*14 + ((11^2)-1)*2 = 268.
First 6 rows and 8 columns:
n\k| 1 2 3 4 5 6 7 8
----+---------------------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1
1 | 2 2 2 2 2 2 2 2
2 | 5 6 8 10 14 16 20 22
3 | 16 28 64 116 268 368 616 764
4 | 67 212 1120 3652 19156 35872 99472 152404
5 | 374 2664 42176 285704 3961832 10581824 51647264 99869288
6 |2825 56632 3583232 61946920 3092997464 13340150272 141339210560 377566978168
-
# produces an array A of the first (7(7+1))/2 terms. However computation quickly becomes expensive for values > 7.
LoadPackage("sonata"); # sonata package needs to be loaded to call function Subgroups. Sonata is included in latest versions of GAP.
N:=[1..7];; R:=[];; S:=[];;
for i in N do
for j in N do
if j>i then
break;
fi;
Add(R,j);
od;
Add(S,R);
R:=[];;
od;
A:=[];;
for n in N do
L:=List([1..Length(S[n])],m->Size(Subgroups(ElementaryAbelianGroup( Primes[Reversed(S[n])[m]]^(S[n][m]-1)))));
Add(A,L);
od;
A:=Flat(A);
-
T(n,k)=polcoeff(sum(i=0,n,x^i/prod(j=0,i,1-primes(k)[k]^j*x+x*O(x^n))),n)
Comments