cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-65 of 65 results.

A228661 Number of 2 X n binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

2, 2, 8, 14, 38, 80, 194, 434, 1016, 2318, 5366, 12320, 28418, 65378, 150632, 346766, 798662, 1838960, 4234946, 9751826, 22456664, 51712142, 119082134, 274218560, 631464962, 1454120642, 3348515528, 7710877454, 17756424038, 40889056400
Offset: 1

Views

Author

R. H. Hardin, Aug 29 2013

Keywords

Comments

Row 2 of A228660.
The recurrence is demonstrated as follows: For every 2X(n-1) array, we can add the column (0,0) to get an appropriate array of size 2Xn, and for every 2X(n-2) array, we can add the column (0,0) and either (1,0), (0,1) or (1,1) to get an appropriate sized array. Every admissible array is of one of these two forms, and these two forms do not overlap (since their last columns are different). - Tom Edgar, Aug 29 2013

Examples

			Some solutions for n=4
..1..0..1..0....1..0..0..0....1..0..0..1....1..0..0..0....1..0..1..0
..1..0..1..0....1..0..0..0....1..0..0..0....0..0..1..0....0..0..0..0
		

Formula

a(n) = a(n-1) +3*a(n-2).
G.f.: -2*x / ( -1+x+3*x^2 ). a(n) = 2*A006130(n-1). - R. J. Mathar, Aug 29 2013
a(n) = -2/13*sqrt(13)*(-1/2*sqrt(13)+1/2)^n + 2/13*sqrt(13)*(1/2*sqrt(13)+1/2)^n. - Tom Edgar, Aug 31 2013
G.f.: Q(0)/x -1/x, where Q(k) = 1 + 3*x^2 + (2*k+3)*x - x*(2*k+1 + 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A249139 Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 3, 1, 5, 2, 11, 7, 1, 21, 16, 3, 43, 41, 12, 1, 85, 94, 34, 4, 171, 219, 99, 18, 1, 341, 492, 261, 60, 5, 683, 1101, 678, 195, 25, 1, 1365, 2426, 1692, 576, 95, 6, 2731, 5311, 4149, 1644, 340, 33, 1, 5461, 11528, 9959, 4488, 1106, 140, 7, 10923, 24881
Offset: 0

Views

Author

Clark Kimberling, Oct 23 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = 1 + (x + 2)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A006130(n+1) for n >= 0.
(Column 1) is essentially A001045.

Examples

			f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (3 + x)/1, so that p(1,x) = 3 + x;
f(2,x) = (5 + 2 x)/(3 + x), so that p(2,x) = 5 + 2 x.
First 6 rows of the triangle of coefficients:
1
3    1
5    2
11   7    1
21   16   3
43   41   12  1
		

Crossrefs

Programs

  • Mathematica
    z = 15; f[x_, n_] := 1 + (x + 2)/f[x, n - 1]; f[x_, 1] = 1;
    t = Table[Factor[f[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249139 array *)
    Flatten[CoefficientList[u, x]] (* A249139 sequence *)

A052666 E.g.f. 1/(1-x-3x^2).

Original entry on oeis.org

1, 1, 8, 42, 456, 4800, 69840, 1093680, 20482560, 420577920, 9736070400, 245887488000, 6806133734400, 203555082931200, 6565920180019200, 226728504946944000, 8355118608764928000, 327047476385710080000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Union(Z,Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

E.g.f.: -1/(-1+x+3*x^2)
Recurrence: {a(1)=1, a(0)=1, (-3*n^2-9*n-6)*a(n)+(-2-n)*a(n+1)+a(n+2)=0}
Sum(1/13*(1+6*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+3*_Z^2))*n!
a(n) = n!*A006130(n). - R. J. Mathar, Nov 27 2011

A347636 Number of ways to tile an n X n square with 1 X 1 squares and (n-2) X 2 vertical or horizontal rectangles.

Original entry on oeis.org

193, 399, 783, 1601, 3283, 6947, 14897, 32607, 72175, 161649, 364611, 827555, 1885729, 4310639, 9874319, 22654881, 52032883, 119601123, 275058321, 632823743, 1456319215, 3352072913, 7716633443, 17765737443, 40904125825, 94182711375
Offset: 5

Views

Author

Greg Dresden and Osondu Ugochukwu, Sep 09 2021

Keywords

Examples

			Here are two of the 193 possible tilings for a 5 X 5 square (using 1 X 1 squares and 3 X 2 rectangles):
._________   ._________
|_|     |_|  |_|_|     |
|_|_ _ _|_|  |   |_ _ _|
|   |_|   |  |   |_|   |
|   |_|   |  |___|_|   |
|___|_|___|  |_|_|_|___|
		

Crossrefs

Cf. A335560 which is the same problem but with 1 X 1 squares and (n-1) X 1 rectangles, and A337024 which uses 1 X 1 squares and 2 X 2 squares.

Formula

a(n) = 2*A006130(n) + 12*F(n + 1) + 16*F(n - 1) - 31 for F(n) = A000045(n) the Fibonacci sequence.
a(n) = 3*a(n-1) + a(n-2) - 7*a(n-3) + a(n-4) + 3*a(n-5).
Previous Showing 61-65 of 65 results.