A103821 A Whitney transform of the central binomial coefficients A000984.
1, 3, 11, 43, 179, 771, 3395, 15171, 68515, 311907, 1428835, 6578531, 30414435, 141105251, 656588899, 3063038051, 14321092195, 67088405091, 314825048675, 1479654425187, 6963888239203, 32815960756835, 154813864252003
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
CoefficientList[Series[1/((1-x)*Sqrt[1-4*x-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
Formula
G.f. : 1/((1-x)sqrt(1-4x-4x^2));
a(n)=sum{k=0..n, sum{i=0..n, C(k, i-k)}*C(2k, k)}.
Conjecture: n*a(n) +(2-5n)*a(n-1) +2*a(n-2)+4*(n-1)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ sqrt(34+23*sqrt(2))*(2+2*sqrt(2))^n/(7*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012
Comments