cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A103821 A Whitney transform of the central binomial coefficients A000984.

Original entry on oeis.org

1, 3, 11, 43, 179, 771, 3395, 15171, 68515, 311907, 1428835, 6578531, 30414435, 141105251, 656588899, 3063038051, 14321092195, 67088405091, 314825048675, 1479654425187, 6963888239203, 32815960756835, 154813864252003
Offset: 0

Views

Author

Paul Barry, Feb 16 2005

Keywords

Comments

Partial sums of A006139. The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))g(x(1+x)).

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)*Sqrt[1-4*x-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

G.f. : 1/((1-x)sqrt(1-4x-4x^2));
a(n)=sum{k=0..n, sum{i=0..n, C(k, i-k)}*C(2k, k)}.
Conjecture: n*a(n) +(2-5n)*a(n-1) +2*a(n-2)+4*(n-1)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ sqrt(34+23*sqrt(2))*(2+2*sqrt(2))^n/(7*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012

A206248 Number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having zero permanent.

Original entry on oeis.org

49, 361, 1600, 9409, 47089, 258064, 1343281, 7198489, 37945600, 201895681, 1068570721, 5672499856, 30061664689, 159465247561, 845443470400, 4483691905729, 23774527583569, 126075439502224, 668536407557041
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2012

Keywords

Comments

Column 1 of A206255.

Examples

			Some solutions for n=4:
..1..0....2..1....2..1....2..3....2..3....3..3....3..3....0..3....0..3....0..1
..0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..2....0..2....0..0
..0..3....1..0....2..1....2..3....0..0....1..1....3..1....0..3....0..0....0..1
..0..1....2..0....0..0....0..0....0..0....0..0....0..0....0..2....3..3....0..2
..0..3....1..0....3..0....1..3....3..0....1..1....0..1....0..1....0..0....0..2
		

Crossrefs

Cf. A206255.

Formula

Empirical: a(n) = 4*a(n-1) +12*a(n-2) -27*a(n-3).
a(n) = A006139(n+2)^2.
Conjectures from Colin Barker, Jun 14 2018: (Start)
G.f.: x*(49 + 165*x - 432*x^2) / ((1 + 3*x)*(1 - 7*x + 9*x^2)).
a(n) = 2^(-n)*((-1)^n*2^(1+n)*3^(3+n) + (77-20*sqrt(13))*(7-sqrt(13))^n + (7+sqrt(13))^n*(77+20*sqrt(13))) / 13.
(End)

A257365 Triangle, read by rows, T(n,k) = Sum_{m=0..(n-k)/2} C(k,m)*C(n-2*m,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 8, 16, 13, 5, 1, 1, 10, 28, 32, 19, 6, 1, 1, 12, 44, 68, 55, 26, 7, 1, 1, 14, 64, 128, 136, 86, 34, 8, 1, 1, 16, 88, 220, 296, 241, 126, 43, 9, 1, 1, 18, 116, 352, 584, 592, 393, 176, 53, 10, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 21 2015

Keywords

Comments

From Emanuele Munarini, Feb 21 2017: (Start)
T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps X=(1,0), D=(1,1) and E=(3,1).
Row sums = A008998.
Central coefficients = A006139. (End)

Examples

			1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 6, 8, 4, 1;
1, 8, 16, 13, 5, 1;
		

Crossrefs

Cf. A006139.

Programs

  • Mathematica
    Table[Sum[Binomial[k, m] Binomial[n - 2 m, k], {m, 0, (n - k)/2}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 21 2015 *)
  • Maxima
    T(n,k):=sum(binomial(k,m)*binomial(n-2*m,k),m,0,(n-k)/2);

Formula

G.f.: 1/(1-y-x*(1+y^2)).
From Emanuele Munarini, Feb 21 2017: (Start)
G.f. for the triangle: 1/(1-x-x*y-x^3*y).
Recurrence: T(n+3,k+1) = T(n+2,k+1) + T(n+2,k) + T(n,k). (End)

A343842 Series expansion of 1/sqrt(8*x^2 + 1), even powers only.

Original entry on oeis.org

1, -4, 24, -160, 1120, -8064, 59136, -439296, 3294720, -24893440, 189190144, -1444724736, 11076222976, -85201715200, 657270374400, -5082890895360, 39392404439040, -305870434467840, 2378992268083200, -18531097667174400, 144542561803960320, -1128808577897594880
Offset: 0

Views

Author

Peter Luschny, May 04 2021

Keywords

Comments

Essentially the inverse binomial convolution of the Delannoy numbers.

Crossrefs

Signed version of A059304.

Programs

  • Maple
    gf := 1/sqrt(8*x^2 + 1): ser := series(gf, x, 32):
    seq(coeff(ser, x, 2*n), n = 0..21);
  • Mathematica
    Take[CoefficientList[Series[1/Sqrt[8*x^2 + 1], {x, 0, 42}], x], {1, -1, 2}] (* Amiram Eldar, May 05 2021 *)
  • PARI
    my(x='x+O('x^25)); Vec(1/sqrt(8*x + 1)) \\ Michel Marcus, May 04 2021

Formula

a(n) = n! * [x^n] BesselJ(0, sqrt(8)*x).
D-finite with recurrence a(n) = 4*(1 - 2*n)*a(n - 1) / n for n >= 2.
a(n) = A(2*n) where A(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A008288(n, k).

A361488 Diagonal of rational function 1/(1 - (x^3 + y^3 + x^4*y)).

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 6, 12, 6, 20, 60, 60, 90, 280, 420, 532, 1330, 2520, 3444, 6804, 14112, 21912, 37884, 77616, 133914, 223080, 432432, 793364, 1341912, 2471040, 4629196, 8076640, 14453010, 26960232, 48308832, 85794852, 157947816, 287413152, 512697900, 933072064
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k] * Binomial[k,n-3*k], {k,0,n/3}], {n,0,20}] (* Vaclav Kotesovec, Mar 23 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*k, k)*binomial(k, n-3*k));

Formula

G.f.: 1/sqrt(1 - 4 * x^3 * (1+x)).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(k,n-3*k).
From Vaclav Kotesovec, Mar 23 2023: (Start)
Recurrence: n*a(n) = 2*(2*n-3)*a(n-3) + 4*(n-2)*a(n-4).
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 1.835086681639635368143322042736678753... is the positive real root of the equation d^4 - 4*d - 4 = 0 and c = 0.2982650309662120181812121016104223... is the largest real root of the equation 1 - 20*c + 132*c^2 - 364*c^3 + 364*c^4 = 0. (End)

A370285 Coefficient of x^n in the expansion of ( (1+x)^2 + x^3 )^n.

Original entry on oeis.org

1, 2, 6, 23, 94, 392, 1659, 7107, 30734, 133880, 586576, 2582142, 11411371, 50597900, 224986467, 1002867878, 4479814606, 20049099908, 89878609344, 403521966942, 1814102538624, 8165526187128, 36794746597494, 165968135843522, 749314496125451, 3385881647958442
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2024

Keywords

Crossrefs

Similar to A082759.

Programs

  • Maple
    a := n -> binomial(2*n, n) * hypergeom([(1-n)/3, (2-n)/3, -n/3], [1/2-n, n+1], 27/4):
    seq(simplify(a(n)), n = 0..25);  # Peter Luschny, Jan 04 2025
  • PARI
    a(n) = sum(k=0, n\3, binomial(n, k)*binomial(2*n-2*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(2*n-2*k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^2 + x^3) ). See A369212.

A370286 Coefficient of x^n in the expansion of ( (1+x)^3 + x^2 )^n.

Original entry on oeis.org

1, 3, 17, 102, 645, 4193, 27764, 186231, 1261213, 8604759, 59053167, 407217396, 2819252544, 19583729766, 136426565999, 952743556907, 6667916884701, 46755146944959, 328398159653117, 2310073990369926, 16271915501598595, 114757849228310355
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n, k)*binomial(3*n-3*k, n-2*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(3*n-3*k,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^3 + x^2) ).

A372086 G.f. A(x) satisfies A(x) = 1/( 1 - 4*x*(1 + x)*A(x) )^(1/2).

Original entry on oeis.org

1, 2, 12, 84, 664, 5624, 49928, 458480, 4318896, 41503168, 405267840, 4009684608, 40109536992, 404977089792, 4121810315584, 42243756499328, 435593319238144, 4515817056202496, 47040399766319360, 492117122988795392, 5168258741713256960
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(3*k/2-1/2, k)*binomial(k, n-k)/(k+1));

Formula

a(n) = Sum_{k=0..n} 4^k * binomial(3*k/2-1/2,k) * binomial(k,n-k)/(k+1).
Previous Showing 41-48 of 48 results.