cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A327250 Numbers k such that s(k) = s(k+1), where s(k) is A059975.

Original entry on oeis.org

3, 80, 175, 272, 492, 860, 943, 6556, 6867, 7104, 7215, 14672, 17459, 21804, 22672, 24435, 24476, 26128, 30899, 34595, 39215, 41327, 45548, 49468, 56563, 57075, 63440, 63744, 67123, 72556, 78524, 87615, 90243, 104111, 109939, 113283, 113296, 115344, 121539, 131651
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2019

Keywords

Comments

Madeleine Farris named these numbers "Euler-totient Ruth-Aaron numbers" (in analogy to the Ruth-Aaron numbers, A039752). She proved that the number of terms <= x is O(x*(log(log(x))^4)/(log(x))^2) and that the sum of their reciprocals is bounded.

Examples

			3 is in the sequence since A059975(3) = A059975(4) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := e * (p-1); a[n_] := Plus @@ (f @@@ FactorInteger[n]); aQ[n_] := a[n] == a[n+1]; Select[Range[10^5], aQ]
  • PARI
    s(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2] * (f[i, 1] - 1));}
    lista(kmax) = {my(s1 = s(1), s2); for(k=2, kmax, s2 = s(k); if(s1 == s2, print1(k-1, ", ")); s1 = s2);} \\ Amiram Eldar, Apr 06 2023

A333801 Numbers k such that A008475(k)+1 = A008475(k+1).

Original entry on oeis.org

2, 3, 4, 7, 8, 16, 20, 31, 35, 127, 143, 208, 256, 650, 1479, 2464, 2623, 4233, 4345, 5183, 8099, 8191, 9424, 11024, 11919, 12099, 14905, 16159, 20220, 20800, 21716, 22194, 24335, 26123, 27335, 27390, 30457, 34945, 38180, 40425, 52206, 56563, 65536, 67123, 68264
Offset: 1

Views

Author

Amiram Eldar, Apr 05 2020

Keywords

Comments

A variation of A064111 and A228126 with unitary prime-power divisors instead of prime divisors.

Examples

			4 is a term since A008475(4) + 1 = 4 + 1 = 5 = A008475(5).
		

Crossrefs

Programs

  • Mathematica
    s[1] = 0; s[n_] := Plus @@ (Power @@@ FactorInteger[n]); seq = {}; s1 = 0; Do[s2 = s[n]; If[s1 + 1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10^5}]; seq

A333802 Numbers k such that A181894(k)+1 = A181894(k+1).

Original entry on oeis.org

2, 3, 4, 16, 20, 35, 143, 152, 208, 256, 650, 1624, 2232, 4233, 4345, 5368, 8099, 9424, 11024, 11919, 12099, 14905, 18424, 20220, 21716, 22194, 24335, 25592, 26123, 27390, 30457, 34945, 38180, 40425, 51992, 52206, 52947, 56563, 63712, 65536, 67123, 71154, 71284
Offset: 1

Views

Author

Amiram Eldar, Apr 05 2020

Keywords

Comments

A variation of A064111 and A228126 with "Fermi-Dirac primes" (or infinitary components) instead of prime divisors.

Examples

			4 is a term since A181894(4) + 1 = 4 + 1 = 5 = A181894(5).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); s[1] = 0; s[n_] := Plus @@ (Flatten @ (f @@@ FactorInteger[n])); seq = {}; s1 = 0; Do[s2 = s[n]; If[s1 + 1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10^5}]; seq

A063969 Numbers k such that sopf(k) = sopf(k+3), where sopf(k) = A008472(k).

Original entry on oeis.org

7, 60, 147, 407, 470, 1053, 1175, 3431, 3822, 5126, 5960, 6280, 6321, 6897, 7200, 8687, 9243, 10760, 12614, 15093, 16153, 18080, 18818, 19668, 20433, 20976, 24648, 26826, 30804, 44016, 45878, 46221, 47423, 55965, 58506, 58682, 59645, 63897
Offset: 1

Views

Author

Jason Earls, Sep 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[65000],Total[Transpose[FactorInteger[#]][[1]]] == Total[ Transpose[FactorInteger[#+3]][[1]]]&] (* Harvey P. Dale, Jan 19 2013 *)
  • PARI
    sopf(n,s,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1],s=s+fac[i,1]); return(s);
    j=[]; for(n=1,100000, if(sopf(n)==sopf(n+3),j=concat(j,n))); j
    
  • PARI
    sopf(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
    { n=0; for (m=1, 10^9, if(sopf(m)==sopf(m + 3), write("b063969.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 04 2009

A045760 Smallest Maris-McGwire k-tuple (k>1) for each k: f(n) = f(n+1) = ... = f(n+k-1), where f is defined in comments.

Original entry on oeis.org

7, 212, 8126, 241995, 3539990, 1330820, 12222533493, 3249880870
Offset: 2

Views

Author

Keywords

Comments

A045759 generalizes to k consecutive integers that all have the same value of f(n), where f(n) = sum of digits of n plus sum of digits in prime factors of n. The sequence shows the integer which starts the smallest set of k (and no more than k) consecutive integers having this property.

Crossrefs

Extensions

Two more terms from Hans Havermann, Dec 13 2000
Offset changed to 2 by Hans Havermann, Jun 22 2014

A227654 Ruth-Aaron triples (1): sum of primes dividing n = sum of primes dividing (n+1) = sum of primes dividing (n+2).

Original entry on oeis.org

89460294, 151165960539, 3089285427491, 6999761340223, 7539504384825
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

a(6) > 10^13. Taking into account primes multiplicity (A039752), the only triples up to 10^13 are those starting at 417162 and 6913943284.

Examples

			7539504384825 = 3^2 * 5^2 * 7^2 * 43 * 251 * 63361,
7539504384826 = 2 * 19 * 367 * 10181 * 53101,
7539504384827 = 17 * 457 * 26309 * 36887 and
3 + 5 + 7 + 43 + 251 + 63361 = 2 + 19 + 367 + 10181 + 53101 = 17 + 457 + 26309 + 36887.
		

Crossrefs

A239290 Number of pairs of terms of the sequence A228126 less than 10^n.

Original entry on oeis.org

4, 7, 8, 19, 55, 149, 497, 1799, 6696, 26109, 106953
Offset: 1

Views

Author

Abhiram R Devesh, Jun 14 2014

Keywords

Crossrefs

Cf. A001414, A006145 Ruth-Aaron numbers (1): sum of prime divisors of n = sum of prime divisors of n+1, A228126 Sum of prime divisors of n (with repetition) is one less than the sum of prime divisors (with repetition) of n+1.

A243902 Number of pairs of terms of the sequence A237929 less than 10^n.

Original entry on oeis.org

2, 3, 4, 9, 18, 45, 146, 469, 1655, 6095, 23775
Offset: 1

Views

Author

Abhiram R Devesh, Jun 14 2014

Keywords

Crossrefs

Cf. A001414, A006145 Ruth-Aaron numbers (1): sum of prime divisors of n = sum of prime divisors of n+1, A228126 Sum of prime divisors of n (with repetition) is one less than the sum of prime divisors (with repetition) of n+1, A237929 Numbers n such that (i) the sum of prime divisors of n (with repetition) is one less than the sum of prime divisors (with repetition) of n+1, and (ii) n and n+1 have the same number of prime divisors (with repetition).

A354603 Numbers k such that sum of distinct primes dividing k is equal to the sum of proper divisors of k+1.

Original entry on oeis.org

3, 7, 14, 31, 127, 206, 2974, 8191, 19358, 20490, 131071, 147454, 286122, 289650, 292332, 441276, 524287, 909498, 1207358, 1657968, 1782540, 2490042, 3368860, 9274806, 11367402, 14107852, 16776156, 18589386, 22910988, 24450316, 26867718, 28959606, 32674506, 33163372
Offset: 1

Views

Author

Metin Sariyar, Jul 08 2022

Keywords

Comments

Numbers k such that A008472(k) = A001065(k+1). All Mersenne primes are terms.

Examples

			Example:  14 is a term because A008472(14) = 2+7 = A001065(15) = 1+3+5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[19358],Sum[f, {f, Select[Divisors[#], PrimeQ]}]==DivisorSigma[1,#+1]-(#+1)&]

Extensions

More terms from Amiram Eldar, Jul 08 2022

A362152 Numbers k such that k and k^2+1 have equal sums of distinct prime divisors.

Original entry on oeis.org

7, 1384230, 1437236, 1770802, 2090663, 4406787, 8493543, 8691863, 11576449, 16147463, 18216983, 22128632, 25156787, 32929141, 43106430, 43768187, 47500230, 50085263, 50497485, 59461592, 66419007, 66507421, 71182692, 95268412, 99848687, 164163693
Offset: 1

Views

Author

Max Alekseyev, Apr 18 2023

Keywords

Comments

Numbers k such that A008472(k) = A008472(k^2+1).

Crossrefs

Programs

  • PARI
    is_A362152(n) = vecsum(factor(n)[,1])==vecsum(factor(n^2+1)[,1]);
Previous Showing 21-30 of 31 results. Next