A238359
Number of genus-9 rooted maps with n edges.
Original entry on oeis.org
11665426077721040625, 3498878057690404966500, 540996834819906946713375, 57494374008560749302297480, 4724172886681078698955547790, 320061005837218582787265273000, 18618409220753939214291224549409, 956146512935178711199035220384800, 44232688287025023758415781081779828, 1871678026675570344184400604255444240
Offset: 18
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358, this sequence,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 9];
Table[a[n], {n, 18, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
A238360
Number of genus-10 rooted maps with n edges.
Original entry on oeis.org
15230046989184655753125, 5199629454143883380553750, 909887917857275652461097750, 108861830345440643086946970900, 10021124647635764856828690342402, 757187906770815991999545249667404, 48918614114003431712044170834572688, 2779227352989564224315657269511192976, 141720718575991991799057452443438430580
Offset: 20
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359, this sequence.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 10];
Table[a[n], {n, 20, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
A006386
Number of sensed genus 1 maps with n edges.
Original entry on oeis.org
1, 6, 46, 452, 4852, 52972, 587047, 6550808, 73483256, 827801468, 9360123740, 106189359544, 1208328304864, 13787042250528, 157700137398689, 1807893066408464, 20768681225892328, 239037464947999900, 2755989928117365244, 31826208029615881656, 368074022535205870382
Offset: 2
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 2..30 (from Mednykh and Nedela)
- A. D. Mednykh and R. Nedela, Enumeration of unrooted maps with given genus, J. Combin. Th. B, 96 (2006), 706-729.
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
- Timothy R. Walsh, Counting maps on doughnuts, Theoretical Computer Science, vol.502, pp.4-15, (September-2013).
- Timothy R. S. Walsh, Alain Giorgetti, Alexander Mednykh, Enumeration of unrooted orientable maps of arbitrary genus by number of edges and vertices, Discrete Math. 312 (2012), no. 17, 2660--2671. MR2935417. - From _N. J. A. Sloane_, Aug 01 2012
A238396
Triangle T(n,k) read by rows: T(n,k) is the number of rooted genus-k maps with n edges, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 2, 0, 9, 1, 0, 54, 20, 0, 0, 378, 307, 21, 0, 0, 2916, 4280, 966, 0, 0, 0, 24057, 56914, 27954, 1485, 0, 0, 0, 208494, 736568, 650076, 113256, 0, 0, 0, 0, 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0, 17399772, 117822512, 248371380, 167808024, 24635754, 0, 0, 0, 0, 0, 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0
Offset: 0
Triangle starts:
00: 1,
01: 2, 0,
02: 9, 1, 0,
03: 54, 20, 0, 0,
04: 378, 307, 21, 0, 0,
05: 2916, 4280, 966, 0, 0, 0,
06: 24057, 56914, 27954, 1485, 0, 0, 0,
07: 208494, 736568, 650076, 113256, 0, 0, 0, 0,
08: 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0,
09: 17399772, 117822512, 248371380, 167808024, 24635754, 0, ...,
10: 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0, ...,
11: 1602117468, 18210135416, 73231116024, 117593590752, 66519597474, 8608033980, 0, ...,
12: 15792300756, 224636864830, 1183803697278, 2675326679856, 2416610807964, 672868675017, 24325703325, 0, ...,
...
- David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.
Columns k for 0<=k<=10 are:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
See
A267180 for nonorientable analog.
The triangle without the zeros is
A269919.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4n - 2)/3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n - k)-1) T[k-1, i] T[n-k-1, g-i] , {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
Table[T[n, g], {n, 0, 10}, {g, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, after Gheorghe Coserea *)
-
N=20;
MEM=matrix(N+1,N+1, r,c, -1); \\ for memoization
Q(n,g)=
{
if (n<0, return( (g<=0) ) ); \\ not given in paper
if (g<0, return( 0 ) ); \\ not given in paper
if (n<=0, return( g==0 ) ); \\ as in paper
my( m = MEM[n+1,g+1] );
if ( m != -1, return(m) ); \\ memoized value
my( t=0 );
t += (4*n-2)/3 * Q(n-1, g);
t += (2*n-3)*(2*n-2)*(2*n-1)/12 * Q(n-2, g-1);
my(l, j);
t += 1/2*
sum(k=1, n-1, l=n-k; \\ l+k == n, both >= 1
sum(i=0, g, j=g-i; \\ i+j == g, both >= 0
(2*k-1)*(2*l-1) * Q(k-1, i) * Q(l-1, j)
);
);
t *= 6/(n+1);
MEM[n+1, g+1] = t; \\ memoize
return(t);
}
for (n=0, N, for (g=0, n, print1(Q(n, g),", "); ); print(); ); /* print triangle */
A006387
Number of unsensed genus 1 maps with n edges.
Original entry on oeis.org
0, 0, 1, 6, 40, 320, 2946, 29364, 309558, 3365108, 37246245, 416751008, 4696232371, 53186743416, 604690121555, 6896534910612, 78867385697513, 904046279771682, 10384916465797240, 119522063788612992, 1378014272286250059
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Evgeniy Krasko and Alexander Omelchenko, Enumeration of Unsensed Orientable Maps on Surfaces of a Given Genus, arXiv:1712.10139 [math.CO], 2017.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3
A007137
Number of rooted maps with n edges on the projective plane.
Original entry on oeis.org
1, 10, 98, 982, 10062, 105024, 1112757, 11934910, 129307100, 1412855500, 15548498902, 172168201088, 1916619748084, 21436209373224, 240741065193282, 2713584138389838, 30687358107371442, 348061628432108352
Offset: 1
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..100
- E. A. Bender, E. R. Canfield and R. W. Robinson, The enumeration of maps on the torus and the projective plane, Canad. Math. Bull., 31 (1988), 257-271; see p. 270.
- Guillaume Chapuy, Maciej Dołęga, A bijection for rooted maps on general surfaces, arXiv:1501.06942 [math.CO], 2016; see corollary 4.5.
- Valery A. Liskovets, A reductive technique for enumerating non-isomorphic planar maps, Discrete Math. 156 (1996), no. 1-3, 197--217. MR1405018 (97f:05087). - _N. J. A. Sloane_, Jun 03 2012
-
R:=sqrt(1-12*x): seq(coeff(convert(series(((2*R+1)/3-sqrt(R*(R+2)/3))/(2*x),x,50),polynom),x,n),n=1..25); # Pab Ter, Nov 07 2005
-
With[{r=Sqrt[1-12x]},Rest[CoefficientList[Series[((2r+1)/3-Sqrt[r (r+2)/3])/ (2x),{x,0,20}],x]]](* Harvey P. Dale, Mar 02 2018 *)
-
seq(N) = {
my(x = 'x + O('x^(N+2)), r=sqrt(1-12*x));
Vec(((2*r+1)/3 - sqrt(r*(r+2)/3))/(2*x));
};
seq(18)
\\ test: y = 'x*Ser(seq(300),'x); 0 == 9*x^3*y^4 - 6*x^2*y^3 + 2*x*(21*x - 1)*y^2 + (10*x - 1)*y + x
\\ Gheorghe Coserea, Jul 07 2018
-
b(n) = sum(k=0, n\2, n!/(k!^2 * (n - 2*k)!)); \\ A002426
a(n) = 2*sum(k=0, n-1, binomial(2*n, k) * 3^k * b(n-k))/(n+1);
vector(18, n, a(n)) \\ Gheorghe Coserea, Dec 26 2018
Reference gives 20 terms
Description corrected May 15 1997, thanks to Jean-Francois Beraud
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 07 2005
A343089
Number of nonseparable rooted toroidal maps with n edges.
Original entry on oeis.org
1, 8, 59, 420, 2940, 20384, 140479, 964184, 6598481, 45059872, 307197620, 2091615760, 14226362200, 96680047568, 656559634503, 4456100344560, 30228597199443, 204971912361512, 1389342336011059, 9414200925647540, 63772600432265968, 431892497914345472
Offset: 2
Comments