cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A238359 Number of genus-9 rooted maps with n edges.

Original entry on oeis.org

11665426077721040625, 3498878057690404966500, 540996834819906946713375, 57494374008560749302297480, 4724172886681078698955547790, 320061005837218582787265273000, 18618409220753939214291224549409, 956146512935178711199035220384800, 44232688287025023758415781081779828, 1871678026675570344184400604255444240
Offset: 18

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=9 of A269919.
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, this sequence, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 9];
    Table[a[n], {n, 18, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396

A238360 Number of genus-10 rooted maps with n edges.

Original entry on oeis.org

15230046989184655753125, 5199629454143883380553750, 909887917857275652461097750, 108861830345440643086946970900, 10021124647635764856828690342402, 757187906770815991999545249667404, 48918614114003431712044170834572688, 2779227352989564224315657269511192976, 141720718575991991799057452443438430580
Offset: 20

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=10 of A269919.
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, A238359, this sequence.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 10];
    Table[a[n], {n, 20, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396

A006386 Number of sensed genus 1 maps with n edges.

Original entry on oeis.org

1, 6, 46, 452, 4852, 52972, 587047, 6550808, 73483256, 827801468, 9360123740, 106189359544, 1208328304864, 13787042250528, 157700137398689, 1807893066408464, 20768681225892328, 239037464947999900, 2755989928117365244, 31826208029615881656, 368074022535205870382
Offset: 2

Views

Author

Keywords

Comments

A genus 1 map can be called a toroidal map.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A379438.
Cf. A006300 (rooted), A006384 (planar), A006387 (unsensed), A104595, A104596, A215019.

Extensions

More terms from Valery A. Liskovets, Mar 22 2005
Edited by N. J. A. Sloane, May 23 2008

A238396 Triangle T(n,k) read by rows: T(n,k) is the number of rooted genus-k maps with n edges, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 2, 0, 9, 1, 0, 54, 20, 0, 0, 378, 307, 21, 0, 0, 2916, 4280, 966, 0, 0, 0, 24057, 56914, 27954, 1485, 0, 0, 0, 208494, 736568, 650076, 113256, 0, 0, 0, 0, 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0, 17399772, 117822512, 248371380, 167808024, 24635754, 0, 0, 0, 0, 0, 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0
Offset: 0

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Examples

			Triangle starts:
00: 1,
01: 2, 0,
02: 9, 1, 0,
03: 54, 20, 0, 0,
04: 378, 307, 21, 0, 0,
05: 2916, 4280, 966, 0, 0, 0,
06: 24057, 56914, 27954, 1485, 0, 0, 0,
07: 208494, 736568, 650076, 113256, 0, 0, 0, 0,
08: 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0,
09: 17399772, 117822512, 248371380, 167808024, 24635754, 0, ...,
10: 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0, ...,
11: 1602117468, 18210135416, 73231116024, 117593590752, 66519597474, 8608033980, 0, ...,
12: 15792300756, 224636864830, 1183803697278, 2675326679856, 2416610807964, 672868675017, 24325703325, 0, ...,
...
		

References

  • David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.

Crossrefs

Sum of row n is A000698(n+1).
See A267180 for nonorientable analog.
The triangle without the zeros is A269919.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4n - 2)/3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n - k)-1) T[k-1, i] T[n-k-1, g-i] , {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
    Table[T[n, g], {n, 0, 10}, {g, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, after Gheorghe Coserea *)
  • PARI
    N=20;
    MEM=matrix(N+1,N+1, r,c, -1);  \\ for memoization
    Q(n,g)=
    {
        if (n<0,  return( (g<=0) ) ); \\ not given in paper
        if (g<0,  return( 0 ) ); \\ not given in paper
        if (n<=0, return( g==0 ) );  \\ as in paper
        my( m = MEM[n+1,g+1] );
        if ( m != -1,  return(m) );  \\ memoized value
        my( t=0 );
        t += (4*n-2)/3 * Q(n-1, g);
        t += (2*n-3)*(2*n-2)*(2*n-1)/12 * Q(n-2, g-1);
        my(l, j);
        t += 1/2*
            sum(k=1, n-1, l=n-k;  \\ l+k == n, both >= 1
                sum(i=0, g, j=g-i;  \\ i+j == g, both >= 0
                    (2*k-1)*(2*l-1) * Q(k-1, i) * Q(l-1, j)
                );
            );
        t *= 6/(n+1);
        MEM[n+1, g+1] = t;  \\ memoize
        return(t);
    }
    for (n=0, N, for (g=0, n, print1(Q(n, g),", "); );  print(); ); /* print triangle */

Formula

From Gheorghe Coserea, Mar 11 2016: (Start)
(n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.
(End)

A006387 Number of unsensed genus 1 maps with n edges.

Original entry on oeis.org

0, 0, 1, 6, 40, 320, 2946, 29364, 309558, 3365108, 37246245, 416751008, 4696232371, 53186743416, 604690121555, 6896534910612, 78867385697513, 904046279771682, 10384916465797240, 119522063788612992, 1378014272286250059
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A379439.
Cf. A006300 (rooted), A006385 (planar), A006386 (sensed), A214814, A214815, A214816.

Extensions

a(12)-a(20) from Evgeniy Krasko, Sep 17 2017

A007137 Number of rooted maps with n edges on the projective plane.

Original entry on oeis.org

1, 10, 98, 982, 10062, 105024, 1112757, 11934910, 129307100, 1412855500, 15548498902, 172168201088, 1916619748084, 21436209373224, 240741065193282, 2713584138389838, 30687358107371442, 348061628432108352
Offset: 1

Views

Author

Keywords

References

  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006300.
A column of A267180.

Programs

  • Maple
    R:=sqrt(1-12*x): seq(coeff(convert(series(((2*R+1)/3-sqrt(R*(R+2)/3))/(2*x),x,50),polynom),x,n),n=1..25); # Pab Ter, Nov 07 2005
  • Mathematica
    With[{r=Sqrt[1-12x]},Rest[CoefficientList[Series[((2r+1)/3-Sqrt[r (r+2)/3])/ (2x),{x,0,20}],x]]](* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    seq(N) = {
      my(x = 'x + O('x^(N+2)), r=sqrt(1-12*x));
      Vec(((2*r+1)/3 - sqrt(r*(r+2)/3))/(2*x));
    };
    seq(18)
    \\ test: y = 'x*Ser(seq(300),'x); 0 == 9*x^3*y^4 - 6*x^2*y^3 + 2*x*(21*x - 1)*y^2 + (10*x - 1)*y + x
    \\ Gheorghe Coserea, Jul 07 2018
    
  • PARI
    b(n) = sum(k=0, n\2, n!/(k!^2 * (n - 2*k)!)); \\ A002426
    a(n) = 2*sum(k=0, n-1, binomial(2*n, k) * 3^k * b(n-k))/(n+1);
    vector(18, n, a(n)) \\ Gheorghe Coserea, Dec 26 2018

Formula

From Pab Ter (pabrlos2(AT)yahoo.com), Nov 07 2005: (Start)
G.f.: ((2*R+1)/3-sqrt(R*(R+2)/3))/(2*x) where R=sqrt(1-12*x);
a(n) ~ sqrt(3/2)*12^n/(n^(5/4)*GAMMA(3/4)). (End)
From Gheorghe Coserea, Dec 26 2018: (Start)
a(n) = (2/(n+1)) * Sum_{k=0..n-1} binomial(2*n, k) * 3^k * A002426(n-k).
G.f. y=A(x) satisfies:
0 = 9*x^3*y^4 - 6*x^2*y^3 + 2*x*(21*x - 1)*y^2 + (10*x - 1)*y + x.
0 = x*(4*x + 1)*(12*x - 1)^3*y'''' + 4*(132*x^2 + 19*x - 1)*(12*x - 1)^2*y''' + 12*(1476*x^2 + 60*x - 11)*(12*x - 1)*y'' + 72*(2016*x^2 - 117*x - 4)*y' + 648*(16*x - 1)*y.
(End)

Extensions

Reference gives 20 terms
Description corrected May 15 1997, thanks to Jean-Francois Beraud
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 07 2005

A343089 Number of nonseparable rooted toroidal maps with n edges.

Original entry on oeis.org

1, 8, 59, 420, 2940, 20384, 140479, 964184, 6598481, 45059872, 307197620, 2091615760, 14226362200, 96680047568, 656559634503, 4456100344560, 30228597199443, 204971912361512, 1389342336011059, 9414200925647540, 63772600432265968, 431892497914345472
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Crossrefs

Row sums of A342989.
Cf. A006300.
Previous Showing 11-17 of 17 results.