A290500
Hypotenuses for which there exist exactly 9 distinct integer triangles.
Original entry on oeis.org
1953125, 3906250, 5859375, 7812500, 11718750, 13671875, 15625000, 17578125, 21484375, 23437500, 27343750, 31250000, 35156250, 37109375, 41015625, 42968750, 44921875, 46875000, 52734375, 54687500, 60546875, 62500000, 64453125, 70312500, 74218750, 82031250
Offset: 1
a(1) = 1953125 = 5^9, a(5) = 11718750 = 2*3*5^9, a(101) = 375000000 = 2^6*3*5^9.
Cf.
A004144 (0),
A084645 (1),
A084646 (2),
A084647 (3),
A084648 (4),
A084649 (5),
A097219 (6),
A097101 (7),
A290499 (8),
A097225 (10),
A290501 (11),
A097226 (12),
A097102 (13),
A290502 (14),
A290503 (15),
A097238 (16),
A097239 (17),
A290504 (18),
A290505 (19),
A097103 (22),
A097244 (31),
A097245 (37),
A097282 (40),
A097626 (67).
A290501
Hypotenuses for which there exist exactly 11 distinct integer triangles.
Original entry on oeis.org
48828125, 97656250, 146484375, 195312500, 292968750, 341796875, 390625000, 439453125, 537109375, 585937500, 683593750, 781250000, 878906250, 927734375, 1025390625, 1074218750, 1123046875, 1171875000, 1318359375, 1367187500, 1513671875, 1562500000, 1611328125
Offset: 1
a(1) = 48828125 = 5^11, a(5) = 292968750 = 2*3*5^11, a(101) = 9375000000 = 2^6*3*5^11.
Cf.
A004144 (0),
A084645 (1),
A084646 (2),
A084647 (3),
A084648 (4),
A084649 (5),
A097219 (6),
A097101 (7),
A290499 (8),
A290500 (9),
A097225 (10),
A097226 (12),
A097102 (13),
A290502 (14),
A290503 (15),
A097238 (16),
A097239 (17),
A290504 (18),
A290505 (19),
A097103 (22),
A097244 (31),
A097245 (37),
A097282 (40),
A097626 (67).
A290502
Hypotenuses for which there exist exactly 14 distinct integer triangles.
Original entry on oeis.org
6103515625, 12207031250, 18310546875, 24414062500, 36621093750, 42724609375, 48828125000, 54931640625, 67138671875, 73242187500, 85449218750, 97656250000, 109863281250, 115966796875, 128173828125, 134277343750, 140380859375, 146484375000, 164794921875
Offset: 1
a(1) = 6103515625 = 5^14, a(5) = 36621093750 = 2*3*5^14, a(101) = 1171875000000 = 2^6*3*5^14.
Cf.
A004144 (0),
A084645 (1),
A084646 (2),
A084647 (3),
A084648 (4),
A084649 (5),
A097219 (6),
A097101 (7),
A290499 (8),
A290500 (9),
A097225 (10),
A290501 (11),
A097226 (12),
A097102 (13),
A290503 (15),
A097238 (16),
A097239 (17),
A290504 (18),
A290505 (19),
A097103 (22),
A097244 (31),
A097245 (37),
A097282 (40),
A097626 (67).
A290503
Hypotenuses for which there exist exactly 15 distinct integer triangles.
Original entry on oeis.org
30517578125, 61035156250, 91552734375, 122070312500, 183105468750, 213623046875, 244140625000, 274658203125, 335693359375, 366210937500, 427246093750, 488281250000, 549316406250, 579833984375, 640869140625, 671386718750, 701904296875, 732421875000
Offset: 1
a(1) = 30517578125 = 5^15, a(5) = 183105468750 = 2*3*5^15, a(101) = 5859375000000 = 2^6*3*5^15.
Cf.
A004144 (0),
A084645 (1),
A084646 (2),
A084647 (3),
A084648 (4),
A084649 (5),
A097219 (6),
A097101 (7),
A290499 (8),
A290500 (9),
A097225 (10),
A290501 (11),
A097226 (12),
A097102 (13),
A290502 (14),
A097238 (16),
A097239 (17),
A290504 (18),
A290505 (19),
A097103 (22),
A097244 (31),
A097245 (37),
A097282 (40),
A097626 (67).
A290504
Hypotenuses for which there exist exactly 18 distinct integer triangles.
Original entry on oeis.org
3814697265625, 7629394531250, 11444091796875, 15258789062500, 22888183593750, 26702880859375, 30517578125000, 34332275390625, 41961669921875, 45776367187500, 53405761718750, 61035156250000, 68664550781250, 72479248046875, 80108642578125, 83923339843750
Offset: 1
a(1) = 3814697265625 = 5^18, a(5) = 22888183593750 = 2*3*5^18, a(101) = 732421875000000 = 2^6*3*5^18.
Cf.
A004144 (0),
A084645 (1),
A084646 (2),
A084647 (3),
A084648 (4),
A084649 (5),
A097219 (6),
A097101 (7),
A290499 (8),
A290500 (9),
A097225 (10),
A290501 (11),
A097226 (12),
A097102 (13),
A290502 (14),
A290503 (15),
A097238 (16),
A097239 (17),
A290505 (19),
A097103 (22),
A097244 (31),
A097245 (37),
A097282 (40),
A097626 (67).
A290505
Hypotenuses for which there exist exactly 19 distinct integer triangles.
Original entry on oeis.org
203125, 265625, 406250, 453125, 531250, 578125, 609375, 640625, 796875, 812500, 828125, 906250, 953125, 1062500, 1140625, 1156250, 1218750, 1281250, 1359375, 1390625, 1421875, 1515625, 1578125, 1593750, 1625000, 1656250, 1703125, 1734375, 1765625, 1812500
Offset: 1
a(1) = 203125 = 5^6*13, a(5) = 531250 = 2*5^6*17, a(281) = 12796875 = 3^2*5^6*7*13.
Cf.
A004144 (0),
A084645 (1),
A084646 (2),
A084647 (3),
A084648 (4),
A084649 (5),
A097219 (6),
A097101 (7),
A290499 (8),
A290500 (9),
A097225 (10),
A290501 (11),
A097226 (12),
A097102 (13),
A290502 (14),
A290503 (15),
A097238 (16),
A097239 (17),
A290504 (18),
A097103 (22),
A097244 (31),
A097245 (37),
A097282 (40),
A097626 (67).
A054994
Numbers of the form q1^b1 * q2^b2 * q3^b3 * q4^b4 * q5^b5 * ... where q1=5, q2=13, q3=17, q4=29, q5=37, ... (A002144) and b1 >= b2 >= b3 >= b4 >= b5 >= ....
Original entry on oeis.org
1, 5, 25, 65, 125, 325, 625, 1105, 1625, 3125, 4225, 5525, 8125, 15625, 21125, 27625, 32045, 40625, 71825, 78125, 105625, 138125, 160225, 203125, 274625, 359125, 390625, 528125, 690625, 801125, 1015625, 1185665, 1221025, 1373125, 1795625
Offset: 1
Bernard Altschuler (Altschuler_B(AT)bls.gov), May 30 2000
1=5^0, 5=5^1, 25=5^2, 65=5*13, 125=5^3, 325=5^2*13, 625=5^4, etc.
-
maxTerm = 10^15;(* this limit gives ~ 500 terms *) maxNumberOfExponents = 9;(* this limit has to be increased until the number of reaped terms no longer changes *) bmax = Ceiling[ Log[ maxTerm]/Log[q]]; q = Reap[For[k = 0 ; cnt = 0, cnt <= maxNumberOfExponents, k++, If[PrimeQ[4*k + 1], Sow[4*k + 1]; cnt++]]][[2, 1]]; Clear[b]; b[maxNumberOfExponents + 1] = 0; iter = Sequence @@ Table[{b[k], b[k + 1], bmax[[k]]}, {k, maxNumberOfExponents, 1, -1}]; Reap[ Do[an = Product[q[[k]]^b[k], {k, 1, maxNumberOfExponents}]; If[an <= maxTerm, Print[an]; Sow[an]], Evaluate[iter]]][[2, 1]] // Flatten // Union (* Jean-François Alcover, Jan 18 2013 *)
-
list(lim)=
{
my(u=[1], v=List(), w=v, pr, t=1);
forprime(p=5,,
if(p%4>1, next);
t*=p;
if(t>lim, break);
listput(w,t)
);
for(i=1,#w,
pr=1;
for(e=1,logint(lim\=1,w[i]),
pr*=w[i];
for(j=1,#u,
t=pr*u[j];
if(t>lim, break);
listput(v,t)
)
);
if(w[i]^2Charles R Greathouse IV, Dec 11 2016
-
def generate_A054994():
"""generate arbitrarily many elements of the sequence.
TO_DO is a list of pairs (radius, exponents) where
"exponents" is a weakly decreasing sequence, and
radius == prod(prime_4k_plus_1(i)**j for i,j in enumerate(exponents))
An example entry is (5525, (2, 1, 1)) because 5525 = 5**2 * 13 * 17.
"""
TO_DO = {(1,())}
while True:
radius, exponents = min(TO_DO)
yield radius #, exponents
TO_DO.remove((radius, exponents))
TO_DO.update(successors(radius,exponents))
def successors(radius,exponents):
# try to increase each exponent by 1 if possible
for i,e in enumerate(exponents):
if i==0 or exponents[i-1]>e:
# can add 1 in position i without violating monotonicity
yield (radius*prime_4k_plus_1(i), exponents[:i]+(e+1,)+exponents[i+1:])
if exponents==() or exponents[-1]>0: # add new exponent 1 at the end:
yield (radius*prime_4k_plus_1(len(exponents)), exponents+(1,))
from sympy import isprime
primes_congruent_1_mod_4 = [5] # will be filled with 5,13,17,29,37,...
def prime_4k_plus_1(i): # the i-th prime that is congruent to 1 mod 4
while i>=len(primes_congruent_1_mod_4): # generate primes on demand
n = primes_congruent_1_mod_4[-1]+4
while not isprime(n): n += 4
primes_congruent_1_mod_4.append(n)
return primes_congruent_1_mod_4[i]
for n,radius in enumerate(generate_A054994()):
if n==34:
print(radius)
break # print the first 35 elements
print(radius, end=", ")
# Günter Rote, Sep 12 2023
A328151
a(n) is the smallest nonnegative integer k where exactly n ordered pairs of positive integers (x, y) exist such that x^2 + y^2 = k.
Original entry on oeis.org
0, 2, 5, 50, 65, 1250, 325, 31250, 1105, 8450, 8125, 19531250, 5525, 488281250, 105625, 211250, 27625, 305175781250, 71825, 7629394531250, 138125, 5281250, 126953125, 4768371582031250, 160225, 35701250, 1221025, 2442050, 3453125
Offset: 0
For n = 3: The sums of the two members of each of the pairs (1, 49), (25, 25) and (49, 1) is 50 and 50 is the smallest nonnegative integer where exactly 3 such pairs exist, so a(3) = 50.
-
a063725(n) = if(n==0, return(0)); my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4==1, f[i, 2]+1, f[i, 2]%2==0 || f[i, 1]==2)) - issquare(n) \\ after Charles R Greathouse IV in A063725
a(n) = for(x=0, oo, if(a063725(x)==n, return(x)))
-
# uses Python code from A063725
from itertools import count
def A328151(n): return next(m for m in ((k**2<<1) if n&1 else k for k in count(0)) if A063725(m)==n) # Chai Wah Wu, Jun 28 2024
A046112
a(n) is smallest integral radius of circle centered at (0,0) having 8n-4 lattice points on its circumference; a(n)/2 is smallest half-integral radius circle centered at (1/2,0) having 4n-2 lattice points; a(n)/3 is smallest third-integral radius circle centered at (1/3,0) having 2n-1 lattice points.
Original entry on oeis.org
1, 5, 25, 125, 65, 3125, 15625, 325, 390625, 1953125, 1625, 48828125, 4225, 1105, 6103515625, 30517578125, 40625, 21125, 3814697265625, 203125, 95367431640625, 476837158203125, 5525, 11920928955078125, 274625
Offset: 1
Except for offset, same as
A006339.
Original entry on oeis.org
1, 5, 25, 125, 65, 625, 3125, 15625, 325, 78125, 390625, 1953125, 1625, 9765625, 48828125, 4225, 244140625, 1105, 8125, 1220703125, 6103515625, 30517578125, 40625, 152587890625, 21125, 762939453125, 3814697265625, 203125
Offset: 1
Table begins:
0: 1,
1: 5,
2: 25,
3: 125,
4: 65,625,
5: 3125,
6: 15625,
7: 325,78125,
8: 390625,
9: 1953125,
10: 1625,9765625,
11: 48828125,
12: 4225,244140625,
13: 1105,8125,1220703125,
14: 6103515625,
15: 30517578125,
16: 40625,152587890625,
17: 21125,762939453125,
18: 3814697265625,
19: 203125,19073486328125,
20: 95367431640625,
...
Comments