A079647 Integer part of the cube root of n and integer part of the square root of n both divide n.
1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 63, 64, 72, 80, 100, 120, 195, 210, 240, 288, 306, 324, 342, 399, 420, 441, 462, 483, 528, 552, 576, 600, 624, 728, 729, 756, 783, 900, 1190, 1260, 1764, 1848, 1980, 2600, 2652, 2704, 3024, 3080, 3136, 3192
Offset: 1
Keywords
Examples
floor(20^(1/2)) = 4 and floor(20^(1/3)) = 2, hence 20 is in the sequence.
Crossrefs
Cf. A006446.
Programs
-
Mathematica
Select[Range[3192], Mod[#, Floor[Sqrt[#]]] == 0 && Mod[#, Floor[#^(1/3)]] == 0 &] (* T. D. Noe, Dec 04 2013 *)
-
PARI
isok(n) = !(n % sqrtint(n)) && !(n % sqrtnint(n, 3)); \\ Michel Marcus, Dec 02 2013
Extensions
Terms corrected by Michel Marcus, Dec 02 2013
Comments