A087138
Expansion of (1-sqrt(1-4*log(1+x)))/2.
Original entry on oeis.org
1, 1, 8, 64, 824, 12968, 252720, 5789712, 153169440, 4589004192, 153643615872, 5684390364288, 230307823878144, 10141452865049088, 482259966649655808, 24630247225278881280, 1344614199041549399040, 78137673004382654223360
Offset: 1
-
Rest[CoefficientList[Series[(1-Sqrt[1-4*Log[1+x]])/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, May 03 2015 *)
-
x='x+O('x^50); Vec(serlaplace((1-sqrt(1-4*log(1+x)))/2)) \\ G. C. Greubel, May 24 2017
A087152
Expansion of (1-sqrt(1-4*log(1+x)))/log(1+x)/2.
Original entry on oeis.org
1, 3, 20, 194, 2554, 42226, 843744, 19769256, 531768120, 16152296424, 546895099200, 20425461026736, 834215500905552, 36988602430554576, 1769524998544143360, 90851799797294235264, 4982968503277896871296
Offset: 1
-
Rest[CoefficientList[Series[(1-Sqrt[1-4*Log[1+x]])/Log[1+x]/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, May 03 2015 *)
-
x='x+O('x^50); Vec(serlaplace((1-sqrt(1-4*log(1+x)))/log(1+x)/2 - 1)) \\ G. C. Greubel, May 24 2017
A295239
Expansion of e.g.f. 2/(1 + sqrt(1 + 4*x*exp(x))).
Original entry on oeis.org
1, -1, 2, -9, 68, -705, 9234, -146209, 2717000, -57986433, 1397949830, -37576332321, 1114326129564, -36141571087297, 1272713716466906, -48360394499269665, 1972269941821097744, -85929979225787811585, 3983422470176606823054, -195765982110500512129057
Offset: 0
-
a:=series(2/(1+sqrt(1+4*x*exp(x))),x=0,20): seq(n!*coeff(a,x,n),n=0..19); # Paolo P. Lava, Mar 27 2019
-
nmax = 19; CoefficientList[Series[2/(1 + Sqrt[1 + 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(-1)^m (m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 19}]
-
a(n) = n!*sum(k=0, n, (-1)^k*k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ Seiichi Manyama, Oct 30 2024
A367164
E.g.f. satisfies A(x) = 1 + A(x)^3 * (1 - exp(-x)).
Original entry on oeis.org
1, 1, 5, 55, 929, 21271, 616265, 21624415, 891671009, 42263854471, 2264336600825, 135325966276975, 8926057815521489, 644116254555006871, 50477965058305364585, 4269330999037434100735, 387619447676360230226369, 37602089272441407334114471
Offset: 0
-
Table[Sum[(-1)^(n-k) * (3*k)!/(2*k+1)! * StirlingS2[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 10 2023 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*(3*k)!/(2*k+1)!*stirling(n, k, 2));
A355290
a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling2(n,k) * Catalan(k).
Original entry on oeis.org
1, 1, 1, 0, -3, -2, 23, 17, -333, 86, 6941, -17025, -160267, 1082864, 2273807, -56742606, 152154285, 2293098332, -22007462809, -15179437171, 1671107690083, -10716783889040, -58404948615167, 1439391012463810, -6701658223127029, -88340107011433060
Offset: 0
-
A355290 := proc(n)
add((-1)^(n-k)*stirling2(n,k)*A000108(k),k=0..n) ;
end proc:
seq(A355290(n),n=0..70) ; # R. J. Mathar, Mar 13 2023
-
a(n) = sum(k=0, n,(-1)^(n-k)*stirling(n, k, 2)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, binomial(2*k, k)/(k+1)*x^k/prod(j=1, k, 1+j*x)))
A069657
Sum( S(n,k) * M(k-1), k=1..n), where S(n,k) = Stirling numbers of the second kind, M(n) = Motzkin numbers, A001006.
Original entry on oeis.org
0, 1, 2, 6, 24, 115, 628, 3818, 25455, 183968, 1428184, 11824098, 103794727, 961461179, 9360372700, 95448502365, 1016413911387, 11273822075837, 129950445723958, 1553488011957986, 19225242250821071, 245899882175001580, 3245812116097119188, 44155099624566615247
Offset: 0
A335748
T(n,k) = (-1)^n*(binomial(2*k,k)/(k+1))*Sum_{j=0..n} (-1)^j*binomial(k,j)*j^n. Triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, -1, 4, 0, 1, -12, 30, 0, -1, 28, -180, 336, 0, 1, -60, 750, -3360, 5040, 0, -1, 124, -2700, 21840, -75600, 95040, 0, 1, -252, 9030, -117600, 705600, -1995840, 2162160, 0, -1, 508, -28980, 571536, -5292000, 25280640, -60540480, 57657600
Offset: 0
[0] 1
[1] 0, 1
[2] 0, -1, 4
[3] 0, 1, -12, 30
[4] 0, -1, 28, -180, 336
[5] 0, 1, -60, 750, -3360, 5040
[6] 0, -1, 124, -2700, 21840, -75600, 95040
[7] 0, 1, -252, 9030, -117600, 705600, -1995840, 2162160
[8] 0, -1, 508, -28980, 571536, -5292000, 25280640, -60540480, 57657600