cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A087138 Expansion of (1-sqrt(1-4*log(1+x)))/2.

Original entry on oeis.org

1, 1, 8, 64, 824, 12968, 252720, 5789712, 153169440, 4589004192, 153643615872, 5684390364288, 230307823878144, 10141452865049088, 482259966649655808, 24630247225278881280, 1344614199041549399040, 78137673004382654223360
Offset: 1

Views

Author

Vladeta Jovovic, Oct 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-4*Log[1+x]])/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, May 03 2015 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace((1-sqrt(1-4*log(1+x)))/2)) \\ G. C. Greubel, May 24 2017

Formula

a(n) = Sum_{k=1..n} Stirling1(n, k)*k!*Catalan(k-1).
a(n) ~ n! / (2*exp(1/8)*sqrt(Pi) * (exp(1/4)-1)^(n-1/2) * n^(3/2)). - Vaclav Kotesovec, May 03 2015
From Seiichi Manyama, Sep 09 2024: (Start)
E.g.f. satisfies A(x) = (log(1 + x)) / (1 - A(x)).
E.g.f.: Series_Reversion( exp(x * (1 - x)) - 1 ). (End)

A087152 Expansion of (1-sqrt(1-4*log(1+x)))/log(1+x)/2.

Original entry on oeis.org

1, 3, 20, 194, 2554, 42226, 843744, 19769256, 531768120, 16152296424, 546895099200, 20425461026736, 834215500905552, 36988602430554576, 1769524998544143360, 90851799797294235264, 4982968503277896871296
Offset: 1

Views

Author

Vladeta Jovovic, Oct 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-4*Log[1+x]])/Log[1+x]/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, May 03 2015 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace((1-sqrt(1-4*log(1+x)))/log(1+x)/2 - 1)) \\ G. C. Greubel, May 24 2017

Formula

a(n) = Sum_{k=0..n} Stirling1(n, k)*k!*Catalan(k).
a(n) ~ 2*n! / (exp(1/8)*sqrt(Pi) * (exp(1/4)-1)^(n-1/2) * n^(3/2)). - Vaclav Kotesovec, May 03 2015

A295239 Expansion of e.g.f. 2/(1 + sqrt(1 + 4*x*exp(x))).

Original entry on oeis.org

1, -1, 2, -9, 68, -705, 9234, -146209, 2717000, -57986433, 1397949830, -37576332321, 1114326129564, -36141571087297, 1272713716466906, -48360394499269665, 1972269941821097744, -85929979225787811585, 3983422470176606823054, -195765982110500512129057
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2017

Keywords

Crossrefs

Programs

  • Maple
    a:=series(2/(1+sqrt(1+4*x*exp(x))),x=0,20): seq(n!*coeff(a,x,n),n=0..19); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 19; CoefficientList[Series[2/(1 + Sqrt[1 + 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(-1)^m (m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = n!*sum(k=0, n, (-1)^k*k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ Seiichi Manyama, Oct 30 2024

Formula

E.g.f.: 1/(1 + x*exp(x)/(1 + x*exp(x)/(1 + x*exp(x)/(1 + x*exp(x)/(1 + ...))))), a continued fraction.
a(n) ~ sqrt(2*(1+LambertW(-1/4))) * n^(n-1) / (exp(n) * (LambertW(-1/4))^n). - Vaclav Kotesovec, Nov 18 2017
a(n) = n! * Sum_{k=0..n} (-1)^k * k^(n-k) * A000108(k)/(n-k)!. - Seiichi Manyama, Oct 30 2024

A367164 E.g.f. satisfies A(x) = 1 + A(x)^3 * (1 - exp(-x)).

Original entry on oeis.org

1, 1, 5, 55, 929, 21271, 616265, 21624415, 891671009, 42263854471, 2264336600825, 135325966276975, 8926057815521489, 644116254555006871, 50477965058305364585, 4269330999037434100735, 387619447676360230226369, 37602089272441407334114471
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * (3*k)!/(2*k+1)! * StirlingS2[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 10 2023 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(3*k)!/(2*k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (3*k)!/(2*k+1)! * Stirling2(n,k).
a(n) ~ sqrt(69) * n^(n-1) / (2^(5/2) * log(27/23)^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Nov 10 2023

A355290 a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling2(n,k) * Catalan(k).

Original entry on oeis.org

1, 1, 1, 0, -3, -2, 23, 17, -333, 86, 6941, -17025, -160267, 1082864, 2273807, -56742606, 152154285, 2293098332, -22007462809, -15179437171, 1671107690083, -10716783889040, -58404948615167, 1439391012463810, -6701658223127029, -88340107011433060
Offset: 0

Views

Author

Seiichi Manyama, Jun 27 2022

Keywords

Crossrefs

Programs

  • Maple
    A355290 := proc(n)
        add((-1)^(n-k)*stirling2(n,k)*A000108(k),k=0..n) ;
    end proc:
    seq(A355290(n),n=0..70) ; # R. J. Mathar, Mar 13 2023
  • PARI
    a(n) = sum(k=0, n,(-1)^(n-k)*stirling(n, k, 2)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, binomial(2*k, k)/(k+1)*x^k/prod(j=1, k, 1+j*x)))

Formula

G.f.: Sum_{k>=0} Catalan(k) * x^k / Product_{j=1..k} (1 + j*x).

A069657 Sum( S(n,k) * M(k-1), k=1..n), where S(n,k) = Stirling numbers of the second kind, M(n) = Motzkin numbers, A001006.

Original entry on oeis.org

0, 1, 2, 6, 24, 115, 628, 3818, 25455, 183968, 1428184, 11824098, 103794727, 961461179, 9360372700, 95448502365, 1016413911387, 11273822075837, 129950445723958, 1553488011957986, 19225242250821071, 245899882175001580, 3245812116097119188, 44155099624566615247
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Crossrefs

A335748 T(n,k) = (-1)^n*(binomial(2*k,k)/(k+1))*Sum_{j=0..n} (-1)^j*binomial(k,j)*j^n. Triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, -1, 4, 0, 1, -12, 30, 0, -1, 28, -180, 336, 0, 1, -60, 750, -3360, 5040, 0, -1, 124, -2700, 21840, -75600, 95040, 0, 1, -252, 9030, -117600, 705600, -1995840, 2162160, 0, -1, 508, -28980, 571536, -5292000, 25280640, -60540480, 57657600
Offset: 0

Views

Author

Peter Luschny, Jul 09 2020

Keywords

Examples

			                             [0] 1
                           [1] 0, 1
                         [2] 0, -1, 4
                       [3] 0, 1, -12, 30
                   [4] 0, -1, 28, -180, 336
                [5] 0, 1, -60, 750, -3360, 5040
          [6] 0, -1, 124, -2700, 21840, -75600, 95040
   [7] 0, 1, -252, 9030, -117600, 705600, -1995840, 2162160
[8] 0, -1, 508, -28980, 571536, -5292000, 25280640, -60540480, 57657600
		

Crossrefs

Cf. A006531 (row sums), A052895 (absolute row sums), T(n,n) = A001761(n) (signed A292220(n)).

Formula

T(n, k) = (-1)^n*CatalanNumber(k)*Sum_{j=0..n}(-1)^j*binomial(k, j)*j^n.
Previous Showing 11-17 of 17 results.