cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A187781 Number of noncongruent polygonal regions in a regular n-gon with all diagonals drawn.

Original entry on oeis.org

1, 1, 3, 3, 7, 7, 14, 14, 25, 21, 41, 40, 63, 60, 92, 72, 129, 121, 175, 166, 231, 192, 298, 285, 377, 360, 469, 350, 575, 553, 696, 666, 833, 744, 987, 956, 1159, 1123, 1350, 1165, 1561, 1508, 1793, 1741, 2047, 1875, 2324, 2255, 2625, 2563, 2951, 2761, 3303, 3214, 3682, 3588, 4089, 3695
Offset: 3

Views

Author

Martin Renner, Jan 05 2013

Keywords

Examples

			a(5) = 3 since the 11 regions of a regular pentagon with all diagonals drawn consist of three different noncongruent polygons: two different triangles (each 5 times) and 1 pentagon.
a(6) = 3 since the 24 regions of the regular hexagon with all diagonals drawn consist of three different noncongruent polygons: 2 triangles (one 6 times, one 12 times) and 1 quadrilateral (6 times).
a(7) = 7 since the 50 regions of the regular heptagon with all diagonals drawn consist of seven different noncongruent polygons: 4 triangles (three 7 times, one 14 times), 1 quadrilateral (7 times), 1 pentagon (7 times) and 1 heptagon.
		

Crossrefs

Extensions

Corrected a(12) and a(16), extended from a(18) through a(60), corrected small typo in a(7) example - Christopher Scussel, Jun 23 2023

A230281 The least possible number of intersection points of the diagonals in the interior of a convex n-gon with all diagonals drawn.

Original entry on oeis.org

0, 1, 5, 13, 29, 49
Offset: 3

Views

Author

Vladimir Letsko, Oct 15 2013

Keywords

Comments

Perhaps a(9) = 94.
After removing two points from the regular 12-gon, that is, removing the corresponding points at 12 o'clock and 2 o'clock, there will be only 157 intersection points of the diagonals, it is less than 161, which is the number of intersections of diagonals in the interior of regular 10-gon. So, a(10) <= 157 < 161 = A006561(10). - Guang Zhou, Jul 27 2018
The greatest possible number of intersection points occurs when each set of four vertices gives diagonals with a unique intersection point. Thus, a(n) <= binomial(n,4) = A000332(n). - Michael B. Porter, Jul 30 2018

Examples

			a(6) = 13 because the number of intersection points of the diagonals in the interior of convex hexagon is equal to 13 if 3 diagonals meet in one point, and this number cannot be less than 13 for any hexagon.
		

Crossrefs

A363174 Array read by rows: T(n,k) is the number of triangles inside a regular n-gon formed by intersecting line segments, considering all configurations of 3 line segments from k distinct vertices, with n >= 3, 3 <= k <= 6.

Original entry on oeis.org

1, 0, 0, 0, 4, 4, 0, 0, 10, 20, 5, 0, 20, 60, 30, 0, 35, 140, 105, 7, 56, 280, 280, 16, 84, 504, 630, 84, 120, 840, 1260, 180, 165, 1320, 2310, 462, 220, 1980, 3960, 796, 286, 2860, 6435, 1716, 364, 4004, 10010, 2856, 455, 5460, 15015, 5005, 560, 7280, 21840, 7744
Offset: 3

Views

Author

Paolo Xausa, May 19 2023

Keywords

Comments

See Sommars and Sommars (1998) for a complete analysis of the problem.

Examples

			Array begins:
  n\k|     3     4     5     6
  ---+---------------------------
   3 |     1,    0,    0,    0;
   4 |     4,    4,    0,    0;
   5 |    10,   20,    5,    0;
   6 |    20,   60,   30,    0;
   7 |    35,  140,  105,    7;
   8 |    56,  280,  280,   16;
   9 |    84,  504,  630,   84;
  10 |   120,  840, 1260,  180;
  ...
		

Crossrefs

Cf. A000579, A006561, A006600 (row sums), A260417.
Cf. A000292 (column k = 3), A033488 (column k = 4), A174002 (column k = 5), A363173 (column k = 6).

Programs

  • Mathematica
    A363174list[rowmax_]:=Module[{d},d[m_,n_]:=Boole[Divisible[n,m]];Table[Binomial[n,k]If[4<=k<=5,k,1]-If[k==6&&EvenQ[n],((1/8n^2-9/8n+7/4)d[2,n]+3/4d[4,n]+(6n-106/3)d[6,n]-33d[12,n]-36d[18,n]-24d[24,n]+96d[30,n]+72d[42,n]+264d[60,n]+96d[84,n]+48d[90,n]+96d[120,n]+48d[210,n])n,0],{n,3,rowmax},{k,3,6}]];A363174list[20]

Formula

T(n,3) = binomial(n,3) = A000292(n-2).
T(n,4) = 4*binomial(n,4) = A033488(n-3).
T(n,5) = 5*binomial(n,5) = A174002(n-4), for n >= 4.
T(n,6) = binomial(n,6) = A000579(n) if n is odd, A000579(n) - A260417(n/2) if n is even.
Sum_{k=3..6} T(n,k) = A006600(n).

A211382 Number of intersections of diagonals in the exterior of a regular n-gon.

Original entry on oeis.org

0, 0, 0, 0, 7, 24, 63, 110, 242, 360, 650, 812, 1425, 1680, 2737, 2718, 4788, 5200, 7812, 8272, 12075, 11328, 17875, 18486, 25542, 26264, 35438, 29070, 47957, 48800, 63525, 64362, 82600, 77940, 105672, 106552, 133263, 134200, 165927, 149478, 204250, 205128, 248850, 249596, 300377
Offset: 3

Views

Author

Martin Renner, Feb 07 2013

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        K = CyclotomicField(n); z = K.gen(); S = set()
        for i in range(n):
            for j in range(i+2, n):
                for k in range(j+1, n):
                    for l in range(k+2, n+i):
                        x = (z^(i-j)-z^(j-i))*(z^l-z^k)-(z^(k-l)-z^(l-k))*(z^j-z^i)
                        y = (z^-j-z^-i)*(z^l-z^k)-(z^-l-z^-k)*(z^j-z^i)
                        if (not y.is_zero()): S.add(x/y)
        return len(S)  # Robin Visser, Jul 29 2024

Formula

a(n) = 1/24*n*(n-3)*(n-5)*(2*n-11) for n odd

Extensions

a(17)-a(29) from Martin Renner, Feb 24 2013
More terms from Robin Visser, Jul 29 2024

A211383 Number of intersections of diagonals in the interior and exterior of a regular n-gon.

Original entry on oeis.org

0, 1, 5, 13, 42, 73, 189, 271, 572, 661, 1365, 1569, 2790, 3057, 5117, 4555, 8664, 9041, 13797, 14213, 20930, 18625, 30525, 30967, 43092, 43513, 59189, 45871, 79422, 79713, 104445, 104619, 134960, 124921, 171717, 171533, 215514, 215081, 267197, 234319, 327660, 326569, 397845, 396337
Offset: 3

Views

Author

Martin Renner, Feb 07 2013

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        K = CyclotomicField(n); z = K.gen(); S = set()
        for i in range(n):
            for j in range(i+2, n):
                for k in range(j+1, n):
                    for l in range(k+2, n+j):
                        x = (z^(i-j)-z^(j-i))*(z^l-z^k)-(z^(k-l)-z^(l-k))*(z^j-z^i)
                        y = (z^-j-z^-i)*(z^l-z^k)-(z^-l-z^-k)*(z^j-z^i)
                        if (l!=n+i) and (not y.is_zero()): S.add(x/y)
        return len(S)  # Robin Visser, Jul 29 2024

Formula

a(n) = (1/8)*n*(n-3)*(n^2-8*n+19) for n odd.
a(n) = A006561(n) + A211382(n).

Extensions

More terms from Robin Visser, Jul 29 2024

A351924 The number of vertices on a diagonal of a regular 2n-gon when all its vertices are connected by lines and where the diagonal passes through the center of the 2n-gon.

Original entry on oeis.org

3, 5, 7, 11, 15, 21, 27, 29, 43, 53, 59, 75, 87, 85, 115, 131, 135, 165, 183, 185, 223, 245, 251, 291, 315, 317, 367, 395, 379, 453, 483, 485, 547, 581, 587, 651, 687, 689, 763, 803, 795, 885, 927, 925, 1015, 1061, 1067, 1155, 1203, 1205, 1303, 1355, 1359, 1461, 1515, 1517, 1627, 1685, 1659
Offset: 2

Views

Author

Scott R. Shannon, Feb 25 2022

Keywords

Comments

No formula for a(n) is currently known.

Examples

			a(3) = 5 as a diagonal of a 6-gon, when all its vertices are connected by lines and where the diagonal passes through the center of the 6-gon, has five vertices on it - the two outer vertices, the central vertex, and two more vertices formed by intersections of the central diagonal with other diagonals. See the linked image of the 6-gon.
		

Crossrefs

A363173 Number of triangles inside a regular n-gon formed by intersecting line segments, considering all configurations of 3 line segments from 6 distinct vertices.

Original entry on oeis.org

0, 0, 0, 0, 7, 16, 84, 180, 462, 796, 1716, 2856, 5005, 7744, 12376, 17508, 27132, 38160, 54264, 73788, 100947, 132216, 177100, 228748, 296010, 374808, 475020, 584140, 736281, 903168, 1107568, 1341232, 1623160, 1939308, 2324784, 2755380, 3262623, 3832080, 4496388
Offset: 3

Views

Author

Paolo Xausa, May 19 2023

Keywords

Crossrefs

Column k = 6 of A363174.

Programs

  • Mathematica
    A363173list[nmax_]:=Module[{d},d[m_,n_]:=Boole[Divisible[n,m]];Table[Binomial[n, 6]-If[EvenQ[n],((1/8n^2-9/8n+7/4)d[2,n]+3/4d[4,n]+(6n-106/3)d[6,n]-33d[12,n]-36d[18,n]-24d[24,n]+96d[30,n]+72d[42,n]+264d[60,n]+96d[84,n]+48d[90,n]+96d[120,n]+48d[210,n])n,0],{n,3,nmax}]];A363173list[50]

Formula

a(n) = binomial(n,6) = A000579(n) if n is odd, A000579(n) - A260417(n/2) if n is even.

A108053 Maximum number of diagonals of a regular n-gon that meet at a non-center point.

Original entry on oeis.org

0, 0, 2, 2, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2
Offset: 3

Views

Author

David W. Wilson, Jun 01 2005

Keywords

Comments

Starting at a(13) = 2, sequence is periodic with period 30.

Examples

			In a 30-gon, there are non-center points where 7 diagonals meet, but no more than 7. Hence a(30) = 7.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[PadLeft[{1},30], {0, 0, 2, 2, 2, 3, 2, 3, 2, 4,2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5},120] (* Ray Chandler, Aug 27 2015 - adapted to new data by Paolo Xausa, May 15 2023 *)
    PadRight[{0,0,2,2,2,3,2,3,2,4},120,{2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,7,2,3}] (* Harvey P. Dale, Jun 20 2021 - adapted to new data by Paolo Xausa, May 15 2023 *)

Formula

From Paolo Xausa, May 11 2023: (Start)
a(n) = 0 if n <= 4.
For n > 4:
a(n) = 2 if n is odd or n = 6;
a(n) = 3 if n != 6 is even but not divisible by 6;
a(n) = 4 if n = 12;
a(n) = 5 if n != 12 is divisible by 6 but not 30;
a(n) = 7 if n is divisible by 30. (End)

Extensions

a(4), a(6) and a(12) corrected by Paolo Xausa, May 11 2023

A180686 Positive integers k such that the number of intersections of diagonals in the interior of a regular k-gon is prime.

Original entry on oeis.org

5, 6, 14, 24, 44, 58, 72, 76, 80, 84, 86, 104, 128, 134, 138, 180, 186, 188, 218, 228, 246, 256, 266, 280, 300, 320, 352, 360, 380, 390, 408, 450, 480, 508, 518, 524, 526, 532, 546, 548, 552, 576, 584, 590, 604, 616, 630, 656, 658, 686, 712, 724, 726, 728, 730
Offset: 1

Views

Author

Robert G. Wilson v, Sep 16 2010

Keywords

References

  • Chris K. Caldwill & G. L. Honaker, Jr., Prime Curios!, The Dictionary of Prime Number Trivia, CreateSpace, Sept. 2009, p. 145.

Crossrefs

Cf. A006561.

Programs

  • Mathematica
    del[m_, n_] := If[ Mod[n, m] == 0, 1, 0]; Int[n_] := If[n < 4, 0, Binomial[n, 4] + del[2, n] (-5n^3 + 45n^2 - 70n + 24)/24 - del[4, n] (3n/2) + del[6, n] (-45n^2 + 262n)/6 + del[12, n]*42n + del[18, n]*60n + del[24, n]*35n - del[30, n]*38n - del[42, n]*82n - del[60, n]*330n - del[84, n]*144n - del[90, n]*96n - del[120, n]*144n - del[210, n]*96n]; Select[ Range@ 759, PrimeQ@ Int@# &]
  • Sage
    def is_A180686(k):
        return Integer(binomial(k,4) + (-5*k^3+45*k^2-70*k+24)*(k%2==0)/24
            - 3*k*(k%4==0)/2 + (-45*k^2+262*k)*(k%6==0)/6 + 42*k*(k%12==0)
            + 60*k*(k%18==0) + 35*k*(k%24==0) - 38*k*(k%30==0)
            - 82*k*(k%42==0) - 330*k*(k%60==0) - 144*k*(k%84==0)
            - 96*k*(k%90==0) - 144*k*(k%120==0) - 96*k*(k%210==0)).is_prime()
    print([k for k in range(1, 1000) if is_A180686(k)])  # Robin Visser, Jul 29 2024

Extensions

Name edited by Robin Visser, Jul 29 2024

A238822 Number of equilateral triangles bounded by the sides and diagonals of a regular 3n-gon.

Original entry on oeis.org

1, 14, 69, 188, 465, 882, 1645, 2648, 4257, 6170, 9141, 12564, 17329, 22778, 30045, 38192, 48705, 60318, 74917, 90740, 110481, 131714, 157389, 184968, 217825, 252902, 294165, 337988, 388977, 442710, 505021, 570464, 645249, 723758, 812805, 906012, 1011025, 1120658, 1243437, 1371080
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2014

Keywords

Crossrefs

Cf. A006561.

Formula

Conjecture: For odd n, a(n) = n*(n+1)^3/2 - 3*n^2. - Vilim Lendvaj, Jul 24 2024

Extensions

a(6)-a(24) from Luca Petrone, Mar 28 2017
Corrected and extended by Vilim Lendvaj, Jul 24 2024
a(26) onwards from Andrew Howroyd, Sep 26 2024
Previous Showing 31-40 of 44 results. Next