cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A049052 Numbers k such that k through k+5 all have the same number of divisors.

Original entry on oeis.org

28374, 90181, 157493, 171893, 171894, 180965, 180966, 210133, 298694, 346502, 369061, 376742, 610310, 647381, 647382, 707286, 729542, 769862, 1039493, 1039494, 1071829, 1071830, 1243541, 1302005, 1449605, 1450261, 1450262
Offset: 1

Views

Author

Keywords

Crossrefs

Other runs of equidivisor numbers: A005237 (runs of 2), A005238 (runs of 3), A006601 (runs of 4), A049051 (runs of 5), A049053 (runs of 7).

Programs

  • Mathematica
    SequencePosition[DivisorSigma[0,Range[1451000]],{x_,x_,x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 03 2020 *)

A292580 T(n,k) is the start of the first run of exactly k consecutive integers having exactly 2n divisors. Table read by rows.

Original entry on oeis.org

5, 2, 6, 14, 33, 12, 44, 603, 242, 10093613546512321, 24, 104, 230, 3655, 11605, 28374, 171893, 48, 2511, 7939375, 60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 19 2017

Keywords

Comments

The number of terms in row n is A119479(2n).
Düntsch and Eggleton (1989) has typos for T(3,5) and T(10,3) (called D(6,5) and D(20,3) in their notation). Letsko (2015) and Letsko (2017) both have a wrong value for T(7,3).
The first value required to extend the data is T(6,13) <= 586683019466361719763403545; the first unknown value that may exist is T(12,19). See the a-file for other known values and upper bounds up to T(50,7).

Examples

			T(1,1) = 5 because 5 is the start of the first "run" of exactly 1 integer having exactly 2*1=2 divisors (5 is the first prime p such that both p-1 and p+1 are nonprime);
T(1,2) = 2 because 2 is the start of the first run of exactly 2 consecutive integers having exactly 2*1=2 divisors (2 and 3 are the only consecutive integers that are prime);
T(3,4) = 242 because the first run of exactly 4 consecutive integers having exactly 2*3=6 divisors is 242 = 2*11^2, 243 = 3^5, 244 = 2^2*61, 245 = 5*7^2.
Table begins:
   n  T(n,1), T(n,2), ...
  ==  ========================================================
   1  5, 2;
   2  6, 14, 33;
   3  12, 44, 603, 242, 10093613546512321;
   4  24, 104, 230, 3655, 11605, 28374, 171893;
   5  48, 2511, 7939375;
   6  60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346, 120402988681658048433948, T(6,13), ...;
   7  192, 29888, 76571890623;
   8  120, 2295, 8294, 153543, 178086, 5852870, 17476613;
   9  180, 6075, 959075, 66251139635486389922, T(9,5);
  10  240, 5264, 248750, 31805261872, 1428502133048749, 8384279951009420621, 189725682777797295066519373;
  11  3072, 2200933376, 104228508212890623;
  12  360, 5984, 72224, 2919123, 15537948, 973277147, 33815574876, 1043710445721, 2197379769820, 2642166652554075, 17707503256664346, T(12,12), ...;
  13  12288, 689278976, 1489106237081787109375;
  14  960, 156735, 23513890624, 4094170438109373, 55644509293039461218749, 4230767238315793911295500109374, 273404501868270838132985214432619890621;
  15  720, 180224, 145705879375, 10868740069638250502059754282498, T(15,5);
  16  840, 21735, 318680, 6800934, 57645182, 1194435205, 14492398389;
  ...
		

Crossrefs

Formula

T(n,2) = A075036(n). - Jon E. Schoenfield, Sep 23 2017

Extensions

a(1)-a(25) from Düntsch and Eggleton (1989) with corrections by Jon E. Schoenfield, Sep 19 2017
a(26)-a(27) from Giovanni Resta, Sep 20 2017
a(28)-a(29) from Hugo van der Sanden, Jan 12 2022
a(30) from Hugo van der Sanden, Sep 03 2022
a(31) added by Hugo van der Sanden, Dec 05 2022; see "calculation of T(6,11)" link for a list of the people involved.
a(32) added by Hugo van der Sanden, Dec 18 2022; see "calculation of T(6,12)" link for a list of the people involved.

A332314 Numbers k such that k, k + 1, k + 2 and k + 3 have the same number of divisors in Gaussian integers.

Original entry on oeis.org

263449773, 334047725, 760228973, 862305773, 1965540624, 2136055725, 2362380525, 2477365422, 2515570575, 2613782223, 2939626925, 3181603023, 3814526223, 3987335022, 4610697039, 4771214574, 4981539822, 5018728272, 5035157775, 5186567824, 6189727725, 6329159823, 6569396973
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Examples

			263449773 is a term since 263449773, 263449774, 263449775 and 263449776 each have 72 divisors in Gaussian integers.
		

Crossrefs

Programs

  • Mathematica
    gaussNumDiv[n_] := DivisorSigma[0, n, GaussianIntegers -> True]; m = 4; s = gaussNumDiv /@ Range[m]; seq = {}; n = m + 1; While[Length[seq] < 10, If[Length @ Union[s] == 1, AppendTo[seq, n - m + 1]]; n++; s = Join[Rest[s], {gaussNumDiv[n]}]]; seq

A332388 Numbers k such that k, k + 1, k + 2 and k + 3 have the same number of divisors in Eisenstein integers.

Original entry on oeis.org

34193750, 76788050, 78267398, 113004199, 135383873, 148843670, 170293249, 199259222, 311313398, 318128599, 364828550, 368222599, 381026822, 384839047, 420686749, 428129222, 430154150, 432466824, 450050450, 462825847, 492828521, 510703975, 517126773, 518268772
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2020

Keywords

Examples

			34193750 is a term since 34193750, 34193751, 34193752 and 34193750 each have 24 divisors in Eisenstein integers.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[p, 3], 0, 2*e + 1, 1, (e + 1)^2, 2, e + 1]; eisNumDiv[1] = 1; eisNumDiv[n_] := Times @@ f @@@ FactorInteger[n]; m = 4; s = eisNumDiv /@ Range[m]; seq = {}; n = m + 1; While[Length[seq] < 10, If[Length @ Union[s] == 1, AppendTo[seq, n - m + 1]]; n++; s = Join[Rest[s], {eisNumDiv[n]}]]; seq

A338454 Starts of runs of 4 consecutive numbers with the same total binary weight of their divisors (A093653).

Original entry on oeis.org

242, 947767, 1041607, 2545015, 3275463, 8170983, 15720871, 21532430, 23752181, 25135885, 25595913, 27981703, 28226983, 30505142, 30962767, 33364805, 37264493, 49002661, 49766629, 52910454, 53408456, 57917191, 57952016, 58331576, 59230454, 60014053, 60723111, 63378005
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2020

Keywords

Comments

Numbers k such that A093653(k) = A093653(k+1) = A093653(k+2) = A093653(k+3).

Examples

			242 is a term since A093653(242) = A093653(243) = A093653(244) = A093653(245) = 18.
		

Crossrefs

Cf. A093653.
Subsequence of A338452 and A338453.
Similar sequences: A006601, A045932, A045940.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; m = 4; fs = f /@ Range[m]; Do[If[Equal @@  fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 10^7}]; s

A347603 Numbers k such that tau(k) = 2*tau(k-1) and sigma(k) = sigma(k-1), where tau(k) and sigma(k) are respectively the number and sum functions of the divisors of k.

Original entry on oeis.org

4365, 74919, 79827, 111507, 347739, 445875, 739557, 2168907, 4481986, 7263945, 7845387, 9309465, 10838247, 12290055, 12673095, 18151479, 22083215, 25645707, 39175955, 62634519, 69076995, 72794967, 80889207, 81166839, 87215967, 94682133, 107522943, 110768835, 119192283
Offset: 1

Views

Author

Claude H. R. Dequatre, Sep 08 2021

Keywords

Comments

Conjecture: the asymptotic density of terms is equal to 0 and this sequence is infinite.

Examples

			a(1) = 4365 because the divisors of 4365 are: 1, 3, 5, 9, 15, 45, 97, 291, 485, 873, 1455, 4365; so, tau(4365) = 12 and sigma(4365) = 7644. The divisors of 4364 are: 1, 2, 4, 1091, 2182, 4364; so, tau(4364) = 6 and sigma(4364) = 7644. Thus tau(4365) = 2*tau(4364), sigma(4365) = sigma(4364) and so 4365 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 10^6], DivisorSigma[0, #] == 2*DivisorSigma[0, # - 1] && DivisorSigma[1, #] == DivisorSigma[1, # - 1] &] (* Amiram Eldar, Sep 08 2021 *)
  • PARI
    for(k=2,100000000,if(numdiv(k)==2*numdiv(k-1) && sigma(k)==sigma(k-1),print1(k", ")))
    
  • Python
    from sympy import divisor_count as tau, divisor_sigma as sigma
    print([k for k in range(2, 10**6) if tau(k) == 2*tau(k-1) and sigma(k) == sigma(k-1)]) # Karl-Heinz Hofmann, Jan 15 2022

A355712 Starts of runs of 4 consecutive numbers with the same number of 5-smooth divisors.

Original entry on oeis.org

28374, 133623, 136374, 187623, 190374, 298374, 349623, 352374, 457623, 460374, 511623, 619623, 622374, 673623, 676374, 781623, 838374, 943623, 946374, 997623, 1000374, 1108374, 1159623, 1162374, 1267623, 1270374, 1321623, 1429623, 1432374, 1483623, 1486374, 1591623
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355583(k) = A355583(k+1) = A355583(k+2) = A355583(k+3).
Are there runs of 5 consecutive numbers with the same number of 5-smooth divisors? There are no such runs below 10^10.

Examples

			28374 is a term since A355583(28374) = A355583(28375) = A355583(28376) = A355583(28377) = 4.
		

Crossrefs

Cf. A355583.
Subsequence of A355710 and A355711.
Similar sequences: A006601, A332314, A332388.

Programs

  • Mathematica
    f[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); s = {}; m = 4; fs = f /@ Range[m]; Do[If[Equal @@ fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 10^6}]; s
  • PARI
    s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1);
    s1 = s(1); s2 = s(2); s3 = s(3); for(k = 4, 1.6e6, s4 = s(k); if(s1 == s2 && s2 == s3 && s3 == s4, print1(k-3,", ")); s1 = s2; s2 = s3; s3 = s4);

A356766 Least number k such that k and k+2 both have exactly 2n divisors, or -1 if no such number exists.

Original entry on oeis.org

3, 6, 18, 40, 127251, 198, 26890623, 918, 17298, 6640, 25269208984375, 3400, 3900566650390623, 640062, 8418573, 18088, 1164385682220458984373, 41650, 69528379848480224609373, 128464, 34084859373, 12164094, 150509919493198394775390625, 90270, 418514293125, 64505245696
Offset: 1

Views

Author

Jean-Marc Rebert, Aug 26 2022

Keywords

Examples

			For n=1, numdiv(3) = numdiv(5) = 2 = 2*1, and no number < 3 satisfies this, hence a(1) = 3.
		

Crossrefs

Numbers k such that k and k+2 both have exactly m divisors: A001359 (m=2), A356742 (m=4), A356743 (m=6), A356744 (m=8).

Programs

Extensions

More terms from Jinyuan Wang, Aug 28 2022
Previous Showing 11-18 of 18 results.