cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 90 results. Next

A098836 Deficient Smith numbers.

Original entry on oeis.org

4, 22, 27, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 382, 391, 454, 483, 517, 526, 535, 562, 627, 634, 645, 663, 706, 729, 778, 825, 861, 895, 913, 915, 922, 958, 985, 1111, 1165, 1219, 1255, 1282, 1449, 1507, 1581, 1633, 1642, 1678, 1755, 1795
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 10 2004

Keywords

Examples

			a(4) = 58 because 58 is a Smith number as well as a deficient number.
		

Crossrefs

Intersection of A005100 and A006753.

Programs

  • Mathematica
    sndnQ[n_]:=!PrimeQ[n]&&DivisorSigma[1,n]<2n&&Total[Flatten[ IntegerDigits/@ (Flatten[ Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]])]]==Total[ IntegerDigits[ n]]; Select[Range[2,2000],sndnQ] (* Harvey P. Dale, Sep 10 2013 *)

A098837 Smith semiprimes.

Original entry on oeis.org

4, 22, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 382, 391, 454, 517, 526, 535, 562, 634, 706, 778, 895, 913, 922, 958, 985, 1111, 1165, 1219, 1255, 1282, 1507, 1633, 1642, 1678, 1795, 1822, 1858, 1894, 1903, 1921, 1966, 2038, 2155, 2173, 2182, 2218
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 10 2004

Keywords

Examples

			a(3)=58 because 58 is a Smith number as well as a semiprime.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..N/2,2)]):
    nP:= nops(P):
    sP:= map(p -> convert(convert(p,base,10),`+`), P):
    Res:= {}:
    for i from 1 to nP do
      for j from i to nP do
        n:= P[i]*P[j];
        if n > N then break fi;
        if convert(convert(n,base,10),`+`) = sP[i]+sP[j] then
          Res:= Res union {n}
        fi
    od od:
    sort(convert(Res,list)); # Robert Israel, Aug 24 2024
  • Mathematica
    sspQ[n_]:=PrimeOmega[n]==2&&Total[Flatten[IntegerDigits/@(Table[#[[1]],#[[2]]]&/@FactorInteger[n])]]==Total[IntegerDigits[n]]; Select[Range[ 2220], sspQ] (* Harvey P. Dale, Jul 25 2019 *)
  • PARI
    dsum(n)=my(s);while(n,s+=n%10;n\=10);s
    list(lim)=my(v=List(),d); forprime(p=2, sqrt(lim), d=dsum(p); forprime(q=p, lim\p, if(d+dsum(q)==dsum(p*q),listput(v, p*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 03 2012

A098838 Smith cubic numbers.

Original entry on oeis.org

27, 729, 19683, 474552, 7077888, 7414875, 8489664, 62099136, 112678587, 236029032, 246491883, 257259456, 279726264, 345948408, 463684824, 567663552, 638277381, 721734273, 766060875, 988047936, 1177583616, 1412467848, 2131746903, 2493326016, 2714704875
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 10 2004

Keywords

Examples

			a(1) = 27 because 27 is a Smith number as well as a cube.
		

Crossrefs

Cf. A006753.

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; tr[n_]:=Transpose[FactorInteger[n]]; t={}; Do[If[!PrimeQ[n]&&Total[d[n]]==Total[d@tr[n][[1]]*tr[n][[2]],2],AppendTo[t,n]],{n,Range[2,1400]^3}]; t (* Jayanta Basu, Jun 04 2013 *)

A098839 Smith square numbers.

Original entry on oeis.org

4, 121, 576, 729, 6084, 10201, 17424, 18496, 36481, 51529, 100489, 124609, 184041, 195364, 410881, 559504, 674041, 695556, 732736, 887364, 896809, 966289, 988036, 1038361, 1190281, 1238769, 1726596, 1852321, 2166784, 2975625, 3407716, 3613801, 3663396
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 10 2004

Keywords

Examples

			a(2) = 121 because 121 is a Smith number as well as a square.
		

Crossrefs

Cf. A006753.

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; tr[n_]:=Transpose[FactorInteger[n]]; t={}; Do[If[!PrimeQ[n]&&Total[d[n]]==Total[d@tr[n][[1]]*tr[n][[2]],2],AppendTo[t,n]],{n,Range[2,1950]^2}]; t (* Jayanta Basu, Jun 04 2013 *)

A103124 1/5-Smith numbers.

Original entry on oeis.org

399996663, 666609999, 669969663, 690696969, 699966663, 2789929969, 3066999963, 3366339999, 3366999933, 3399696663, 3399996633, 3666699663, 3669933993, 3933969693, 6066690999, 6069996663, 6099996633, 6393996933, 6399636963, 6666009999, 6669669633, 6966939633
Offset: 1

Views

Author

Shyam Sunder Gupta, Mar 16 2005

Keywords

Examples

			399996663 is a 5^(-1) Smith number because the digit sum of 399996663, i.e., S(399996663) = 3 + 9 + 9 + 9 + 9 + 6 + 6 + 6 + 3 = 60, which is equal to 5 times the sum of the digits of its prime factors, i.e., 5*Sp(399996663) = 5*Sp(3*11*101*120011) = 5*(3 + 1 + 1 + 1 + 0 + 1 + 1 + 2 + 0 + 0 + 1 + 1) = 60.
		

Crossrefs

Cf. A006753.

Extensions

a(6)-a(22) from Donovan Johnson, Sep 20 2011

A104167 Numbers which when multiplied by any repunit prime Rp give a Smith number.

Original entry on oeis.org

1540, 1720, 2170, 2440, 5590, 6040, 7930, 8344, 8470, 8920, 23590, 24490, 25228, 29080, 31528, 31780, 33544, 34390, 35380, 39970, 40870, 42490, 42598, 43480, 44380, 45955, 46270, 46810, 46990, 47908, 48790, 49960, 51490, 51625, 52345, 52570, 53290, 57070
Offset: 1

Views

Author

Shyam Sunder Gupta, Mar 10 2005

Keywords

Comments

Numbers in the sequence must have a digital root of 1.
If the definition is modified, considering only repunits greater than 11, other numbers have the same property: 3304, 12070, 11080, 11620, 16030, 21340, 22330, 24130, 24220. - Mauro Fiorentini, Jul 16 2015

Examples

			1720 is a number in the sequence because 1720*Rp is always a Smith number, where Rp is a Repunit prime. Let Rp=11, so 1720*11=18920, which is a Smith number as the sum of digits of 18920 is 1+8+9+2+0 = 20 and the sum of digits of prime factors of 18920 (i.e., 2*2*2*5*11*43) is also 20 (i.e., 2+2+2+5+1+1+4+3).
		

Crossrefs

A104168 Smallest Smith number with n prime factors.

Original entry on oeis.org

4, 27, 636, 378, 729, 648, 576, 2688, 17496, 44928, 75776, 168960, 765952, 319488, 958464, 5537792, 5963776, 2883584, 5767168, 7077888, 279969792, 544997376, 778567680, 2579496960, 4567597056, 3875536896, 22749904896, 60699967488, 87509958656, 164886478848, 758296608768, 199715979264, 599147937792, 5295694675968, 446676598784, 2954937499648
Offset: 2

Views

Author

Shyam Sunder Gupta, Mar 10 2005 and May 03 2005

Keywords

Comments

a(38) > 1.286e13. - Max Alekseyev, Oct 03 2024

Examples

			a(4) = 636 because 636 is the smallest Smith number with 4 prime factors.
		

Crossrefs

Extensions

a(28)-a(31) from Donovan Johnson, Jan 02 2013
a(32)-a(37) from Max Alekseyev, Oct 01 2024

A104169 Highly decomposable Smith numbers. A Smith number which sets a record for the number of prime factors (counting multiplicity) starting from first Smith number is called a highly decomposable Smith number.

Original entry on oeis.org

4, 27, 378, 576, 2688, 17496, 44928, 75776, 168960, 319488, 958464, 2883584, 5767168, 7077888, 279969792, 544997376, 778567680, 2579496960, 3875536896, 22749904896, 60699967488, 87509958656, 164886478848, 199715979264, 446676598784, 2954937499648
Offset: 1

Views

Author

Shyam Sunder Gupta, Mar 10 2005 and May 03 2005

Keywords

Comments

It is conjectured that except for 27, all highly decomposable Smith numbers are even.
a(27) > 1.286e13. - Max Alekseyev, Oct 03 2024

Examples

			a(3) = 378 because the Smith number 378 has 5 prime factors which is > any Smith number < 378.
		

References

  • Shyam Sunder Gupta, Smith Numbers, Mathematical Spectrum, 37 (2004/5), 27-29.

Crossrefs

Subsequence of A104168.
Cf. A006753.

Formula

Number m = A104168(k) in this sequence iff m = min_{n>=k} A104168(n).

Extensions

a(20)-a(23) from Donovan Johnson, Jan 02 2013
a(24)-a(26) from Max Alekseyev, Sep 28 2024

A104170 Number of Smith numbers below 10^n.

Original entry on oeis.org

1, 6, 49, 376, 3294, 29928, 278411, 2632758, 25154060, 241882509, 2335807857, 22635291815, 219935518608
Offset: 1

Views

Author

Shyam Sunder Gupta, Mar 10 2005

Keywords

Examples

			a(4)=376 because number of Smith number below 10^4 is 376.
		

References

  • S. S. Gupta, Smith Numbers, Mathematical Spectrum, 37 (2004/5), 27-29.

Crossrefs

Cf. A006753.

Extensions

a(11), a(12) from Max Alekseyev, Jan 20 2010
a(13) from Max Alekseyev, Oct 01 2010

A176385 The smallest number which when multiplied by the n-th repunit gives a Smith number.

Original entry on oeis.org

4, 2, 6, 56, 32, 97, 6, 95, 176, 4, 32, 309, 68, 68, 194, 616, 175, 96, 1540, 4, 816, 14, 1540, 95, 840, 32, 5, 437, 50, 10336, 95, 5, 995, 976, 175, 14, 40, 570, 1976, 995, 1400, 294, 1994, 176, 544, 507, 328, 392, 77, 11020, 18905, 18050, 9995, 779, 4, 805, 669
Offset: 1

Views

Author

Paul Weisenhorn, Apr 16 2010, Apr 23 2010

Keywords

Comments

Smith numbers, A006753: the digits-sum equals the digits-sum of its prime factors.
Repunits: R(n)=(10^n-1)/9 = A002275(n).

Examples

			R(3)=111 multiplied by a(3)=6 yields z=666=2*3*3*37 = A006753(34): 6+6+6 = 2+3+3+3+7 = 18.
		

Programs

  • Maple
    # digits-sum of primfactors of z=dsp(z)
    for n from 2 to 70 do f(n):=1: test:=false:
    while (f(n) < 420000) and (test=false) do
    f(n):=f(n)+1: z:=f(n)*r(n): ds(z):=0:
    dsp(z):=dsp(r(n))+dsp(f(n)):
    while (z>0) do z:=iquo(z,10,'m'): ds(z):=ds(z)+m: end do:
    if(ds(z)=dsp(z)) then test:=true: print(n,f(n)): end if:
    end do: end do:

Extensions

Keyword:base added by R. J. Mathar, Apr 24 2010
Previous Showing 61-70 of 90 results. Next