cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A135717 a(n) = number of prime divisors of Carmichael numbers A002997(n).

Original entry on oeis.org

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 3, 4, 5, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5
Offset: 1

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Comments

Number of prime divisors is always >= 3. For the least Carmichael number with n prime factors see A006931.

Crossrefs

Formula

a(n) = A001221(A002997(n)). - M. F. Hasler, Apr 14 2015

A174612 Number of four-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 19, 55, 144, 314, 619, 1179, 2102, 3639, 6042, 9938, 16202, 25758, 40685, 63343, 98253, 151566, 232742
Offset: 0

Views

Author

Michel Lagneau, Mar 23 2010

Keywords

Examples

			For n=5, the smallest Carmichael number with 4 prime factors is 41041 = 7*11*13*41.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(0) inserted and a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A174614 Number of six-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 99, 459, 1714, 5270, 14401, 36907, 86696, 194306, 414660, 849564, 1681744, 3230120, 6034046
Offset: 0

Views

Author

Michel Lagneau, Mar 23 2010

Keywords

Examples

			For n=9: the smallest Carmichael number with 6 prime factors is 321197185 = 5*19*23*29*37*137.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A174615 Number of seven-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 41, 262, 1340, 5359, 19210, 60150, 172234, 460553, 1159167, 2774702, 6363475, 14056367
Offset: 0

Views

Author

Michel Lagneau, Mar 23 2010

Keywords

Examples

			The smallest Carmichael number with 7 prime factors is 5394826801 = 7*13*17*23*31*67*73, and there is one other 10-digit example, so a(10)=2.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A174616 Number of eight-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 89, 655, 3622, 16348, 63635, 223997, 720406, 2148017, 6015901, 16005646
Offset: 0

Views

Author

Michel Lagneau, Mar 23 2010

Keywords

Examples

			The smallest Carmichael number with 8 prime factors is 232250619601 = 7*11*13*17*31*37*73*163, and there are 6 others, so a(12) = 7.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A174617 Number of nine-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 27, 170, 1436, 8835, 44993, 196391, 762963, 2714473, 8939435
Offset: 0

Views

Author

Michel Lagneau, Mar 23 2010

Keywords

Examples

			The smallest Carmichael number with 9 prime factors is 9746347772161 = 7*11*13*17*19*31*37*41*641, so a(13)=1..
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 220.

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A299711 Number of eleven-prime Carmichael numbers less than 10^n.

Original entry on oeis.org

1, 49, 576, 5804, 42764, 262818
Offset: 17

Views

Author

Tim Johannes Ohrtmann, Feb 17 2018

Keywords

Examples

			60977817398996785 = 5*7*17*19*23*37*53*73*79*89*233 is the only Carmichael number with eleven prime factors below 10^17, so a(17) = 1.
		

Crossrefs

For k-prime Carmichael numbers up to 10^n for k = 3,4,...,11, see A132195, A174612, A174613, A174614, A174615, A174616, A174617, A299710, A299711.

Extensions

a(22) from Claude Goutier added by Amiram Eldar, Apr 19 2024

A112431 Carmichael numbers equal to the product of 8 primes.

Original entry on oeis.org

232250619601, 306177962545, 432207073585, 576480525985, 658567396081, 689702851201, 747941832001, 1013666981041, 1110495895201, 1111586883121, 1286317859905, 1292652236161, 1341323384401, 1471186523521, 1567214060545
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 11 2005

Keywords

Examples

			a(1) = 232250619601 = 7*11*13*17*31*37*73*163.
		

Crossrefs

Programs

A141711 Carmichael numbers with more than 3 prime factors.

Original entry on oeis.org

41041, 62745, 63973, 75361, 101101, 126217, 172081, 188461, 278545, 340561, 449065, 552721, 656601, 658801, 670033, 748657, 825265, 838201, 852841, 997633, 1033669, 1050985, 1082809, 1569457, 1773289, 2100901, 2113921, 2433601
Offset: 1

Views

Author

M. F. Hasler, Jul 01 2008

Keywords

Comments

Sequence A087788 gives Carmichael numbers with exactly 3 prime factors; since they cannot have fewer (cf. references in A002997), this sequence is the complement of A087788 in A002997.
The terms preceding a(17) = 825265 = A006931(5) have exactly 4 prime factors. See A112428 - A112432 for Carmichael numbers with exactly 5, ..., 9 prime factors. - M. F. Hasler, Apr 14 2015

Examples

			a(17)=825265 is the least Carmichael number having more than 4 divisors, thus the sequence differs from A074379 only from that term on.
		

Crossrefs

Programs

  • Mathematica
    ok[n_] :=  Divisible[n - 1, CarmichaelLambda[n]] && Length[FactorInteger[n]] > 3; Select[ Range[3*10^6], ok] (* Jean-François Alcover, Sep 23 2011 *)
  • PARI
    A2997=readvec("b002997.gp"); A002997(n)=A2997[n]; for( n=1,100, omega( A002997(n) ) > 3 & print1( A002997(n)", "))

Formula

A135721 a(n) is the smallest Carmichael number (A002997) divisible by the n-th prime, or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 561, 1105, 561, 1729, 6601, 2465, 2821, 29341, 6601, 334153, 62745, 2433601, 74165065, 29341, 8911, 10024561, 10585, 2508013, 55462177, 62745, 46657, 101101, 52633, 84350561, 188461, 278545, 1152271, 18307381, 410041, 2628073, 12261061, 838201
Offset: 2

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Examples

			561 is the first Carmichael number and its prime factors are 3, 11, 17 (2nd, 5th and 7th primes), so a(2), a(5) and a(7) are equal to 561. - _Michel Marcus_, Nov 07 2013
		

Crossrefs

Programs

  • Mathematica
    c = Cases[Range[1, 10000000, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Table[First@ Select[c, Mod[#, Prime@ n] == 0 &], {n, 2, 16}] (* Michael De Vlieger, Aug 28 2015, after Artur Jasinski at A002997 *)
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1
    a(n) = my(pn=prime(n),cn = 31*pn); until (isA002997(cn+=2*pn),); cn; \\ Michel Marcus, Nov 07 2013, improved by M. F. Hasler, Apr 14 2015
    
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    a(n,p=prime(n))=my(m=lift(Mod(1/p,p-1)),c=max(m,33)*p,mp=m*p); while(!isprime(c) && !Korselt(c), c+=mp); c \\ Charles R Greathouse IV, Apr 15 2015

Extensions

More terms from Michel Marcus, Nov 07 2013
Escape clause added by Jianing Song, Dec 12 2021
Previous Showing 11-20 of 28 results. Next