cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-54 of 54 results.

A073960 Number of commuting elements: number of ordered pairs g, h in the group GL(n,2) such that gh = hg.

Original entry on oeis.org

1, 18, 1008, 282240, 269982720, 1209522585600, 19170449172725760, 1315623687226078003200, 342810031916266844848128000, 367173017574548024679647831654400, 1534674653372294809728193910618770636800, 26108462572660693961035262279317764270194688000
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 13 2003

Keywords

Crossrefs

Formula

a(n) = A002884(n) * A006951(n).

Extensions

More terms from Eric M. Schmidt, May 05 2013

A211171 Exponent of general linear group GL(n,2).

Original entry on oeis.org

1, 6, 84, 420, 26040, 78120, 9921240, 168661080, 24624517680, 270869694480, 554470264600560, 7208113439807280, 59041657185461430480, 2538791258974841510640, 383357480105201068106640, 98522872387036674503406480, 25826982813282567927671981480160
Offset: 1

Views

Author

Alexander Gruber, Jan 31 2013

Keywords

Comments

a(n) is the smallest integer for which x^a(n) = 1 for any x in GL(n,2).

Examples

			n = 2: GL(2,2) is isomorphic to S3 which has exponent 6 (see: A003418).
n = 3: The set of element orders of GL(3,2) is {1,2,3,4,7} so the exponent is 84.
n = 5: The set of element orders of GL(5,2) is {1,2,3,4,5, 6,7,8,12,14, 15,21,31} so the exponent is 26040 (see: A053651).
		

Crossrefs

Cf. A006951 (number of conjugacy classes in GL(n,2)).

Programs

  • Magma
    for n in [1..18] do
    Exponent(GL(n,2));
    end for;
    
  • Maple
    with(numtheory):
    a:= proc(n) local t; t:= 2^ilog2(n);
          `if`(tAlois P. Heinz, Feb 04 2013
  • Mathematica
    f[q_, n_] := With[{p = Sort[Divisors[q]][[2]]},
      p^Ceiling[Log[p, n]] Product[Cyclotomic[k, q], {k, n}]]; f[2,#]&/@Range[100]
  • PARI
    a(n) = 2^ceil(log(n)/log(2))*prod(k=1, n, polcyclo(k, 2)); \\ Michel Marcus, Jan 29 2020

Formula

a(n) = 2^ceiling(log_2(n)) * Product_{k=1..n} (k-th cyclotomic polynomial evaluated at 2).
a(n) = A034268(n)*A062383(n+1). - Michel Marcus, Jul 29 2022

A309733 Expansion of Product_{k>=1} 1/(1 - x^k/(1 - x^(2*k))).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 22, 36, 62, 104, 174, 286, 478, 780, 1284, 2100, 3433, 5586, 9114, 14798, 24064, 39050, 63376, 102726, 166584, 269835, 437190, 707964, 1146480, 1855966, 3004748, 4863306, 7871798, 12739576, 20617652, 33364524, 53992834, 87369548, 141379728, 228769842
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - x^k/(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 22 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k/(1-x^(2*k))))

Formula

a(n) ~ phi^(n+1), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 22 2019

A336129 Number of strict compositions of divisors of n.

Original entry on oeis.org

1, 2, 4, 5, 6, 16, 14, 24, 31, 64, 66, 120, 134, 208, 360, 459, 618, 894, 1178, 1622, 2768, 3364, 4758, 6432, 8767, 11440, 15634, 24526, 30462, 42296, 55742, 75334, 98112, 131428, 168444, 258403, 315974, 432244, 558464, 753132, 958266, 1280840, 1621274
Offset: 1

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Comments

A strict composition of k is a finite sequence of distinct positive integers summing to k.

Examples

			The a(1) = 1 through a(7) = 14 compositions:
  (1)  (1)  (1)    (1)    (1)    (1)      (1)
       (2)  (3)    (2)    (5)    (2)      (7)
            (1,2)  (4)    (1,4)  (3)      (1,6)
            (2,1)  (1,3)  (2,3)  (6)      (2,5)
                   (3,1)  (3,2)  (1,2)    (3,4)
                          (4,1)  (1,5)    (4,3)
                                 (2,1)    (5,2)
                                 (2,4)    (6,1)
                                 (4,2)    (1,2,4)
                                 (5,1)    (1,4,2)
                                 (1,2,3)  (2,1,4)
                                 (1,3,2)  (2,4,1)
                                 (2,1,3)  (4,1,2)
                                 (2,3,1)  (4,2,1)
                                 (3,1,2)
                                 (3,2,1)
		

Crossrefs

Compositions of divisors are A034729.
Strict partitions of divisors are A047966.
Partitions of divisors are A047968.

Programs

  • Mathematica
    Table[Sum[Length[Join@@Permutations/@Select[IntegerPartitions[d],UnsameQ@@#&]],{d,Divisors[n]}],{n,12}]

Formula

Moebius transform is A032020 (strict compositions).
Previous Showing 51-54 of 54 results.