A073960
Number of commuting elements: number of ordered pairs g, h in the group GL(n,2) such that gh = hg.
Original entry on oeis.org
1, 18, 1008, 282240, 269982720, 1209522585600, 19170449172725760, 1315623687226078003200, 342810031916266844848128000, 367173017574548024679647831654400, 1534674653372294809728193910618770636800, 26108462572660693961035262279317764270194688000
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 13 2003
A211171
Exponent of general linear group GL(n,2).
Original entry on oeis.org
1, 6, 84, 420, 26040, 78120, 9921240, 168661080, 24624517680, 270869694480, 554470264600560, 7208113439807280, 59041657185461430480, 2538791258974841510640, 383357480105201068106640, 98522872387036674503406480, 25826982813282567927671981480160
Offset: 1
n = 2: GL(2,2) is isomorphic to S3 which has exponent 6 (see: A003418).
n = 3: The set of element orders of GL(3,2) is {1,2,3,4,7} so the exponent is 84.
n = 5: The set of element orders of GL(5,2) is {1,2,3,4,5, 6,7,8,12,14, 15,21,31} so the exponent is 26040 (see: A053651).
- Alexander Gruber, Table of n, a(n) for n = 1..100
- Gert Almkvist, Powers of a matrix with coefficients in a Boolean ring, Proc. Amer. Math. Soc. 53 (1975), 27-31. See u_n.
- Eugene Karolinsky and Dmytro Seliutin, Carmichael numbers for GL(m), arXiv:2001.10315 [math.NT], 2020; where a(n) is noted as K2(n), see page 1.
- MathStackExchange, Exponent of GL(n,q)
Cf.
A006951 (number of conjugacy classes in GL(n,2)).
-
for n in [1..18] do
Exponent(GL(n,2));
end for;
-
with(numtheory):
a:= proc(n) local t; t:= 2^ilog2(n);
`if`(tAlois P. Heinz, Feb 04 2013
-
f[q_, n_] := With[{p = Sort[Divisors[q]][[2]]},
p^Ceiling[Log[p, n]] Product[Cyclotomic[k, q], {k, n}]]; f[2,#]&/@Range[100]
-
a(n) = 2^ceil(log(n)/log(2))*prod(k=1, n, polcyclo(k, 2)); \\ Michel Marcus, Jan 29 2020
A309733
Expansion of Product_{k>=1} 1/(1 - x^k/(1 - x^(2*k))).
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 22, 36, 62, 104, 174, 286, 478, 780, 1284, 2100, 3433, 5586, 9114, 14798, 24064, 39050, 63376, 102726, 166584, 269835, 437190, 707964, 1146480, 1855966, 3004748, 4863306, 7871798, 12739576, 20617652, 33364524, 53992834, 87369548, 141379728, 228769842
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[1/(1 - x^k/(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 22 2019 *)
-
N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k/(1-x^(2*k))))
A336129
Number of strict compositions of divisors of n.
Original entry on oeis.org
1, 2, 4, 5, 6, 16, 14, 24, 31, 64, 66, 120, 134, 208, 360, 459, 618, 894, 1178, 1622, 2768, 3364, 4758, 6432, 8767, 11440, 15634, 24526, 30462, 42296, 55742, 75334, 98112, 131428, 168444, 258403, 315974, 432244, 558464, 753132, 958266, 1280840, 1621274
Offset: 1
The a(1) = 1 through a(7) = 14 compositions:
(1) (1) (1) (1) (1) (1) (1)
(2) (3) (2) (5) (2) (7)
(1,2) (4) (1,4) (3) (1,6)
(2,1) (1,3) (2,3) (6) (2,5)
(3,1) (3,2) (1,2) (3,4)
(4,1) (1,5) (4,3)
(2,1) (5,2)
(2,4) (6,1)
(4,2) (1,2,4)
(5,1) (1,4,2)
(1,2,3) (2,1,4)
(1,3,2) (2,4,1)
(2,1,3) (4,1,2)
(2,3,1) (4,2,1)
(3,1,2)
(3,2,1)
Compositions of divisors are
A034729.
Strict partitions of divisors are
A047966.
Partitions of divisors are
A047968.
-
Table[Sum[Length[Join@@Permutations/@Select[IntegerPartitions[d],UnsameQ@@#&]],{d,Divisors[n]}],{n,12}]
Comments