cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A276994 Decimal expansion of the Klarner-Rivest polyomino constant.

Original entry on oeis.org

2, 3, 0, 9, 1, 3, 8, 5, 9, 3, 3, 3, 0, 4, 9, 4, 7, 3, 1, 0, 9, 8, 7, 2, 0, 3, 0, 5, 0, 1, 7, 2, 1, 2, 5, 3, 1, 9, 1, 1, 8, 1, 4, 4, 7, 2, 5, 8, 1, 6, 2, 8, 4, 0, 1, 6, 9, 4, 4, 0, 2, 9, 0, 0, 2, 8, 4, 4, 5, 6, 4, 4, 0, 7, 4, 8, 3, 1, 6, 8, 4, 2, 7, 1, 7, 2, 8, 1, 6, 1, 5, 7, 7, 4, 4, 1, 2, 1, 7, 4, 3, 7, 4, 6, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 27 2016

Keywords

Comments

Analytic Combinatorics (Flajolet and Sedgewick, 2009, p. 662) has a wrong value of this constant (2.309138593331230...).

Examples

			2.309138593330494731098720305017212531911814472581628401694402900284456440748...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.19 (Klarner's polyomino constant), p. 380.

Crossrefs

Cf. A006958.

Programs

  • Mathematica
    1/z/.FindRoot[Sum[(-1)^n * z^(n*(n+1)/2) / QPochhammer[z, z, n]^2, {n, 0, 1000}], {z, 2/5}, WorkingPrecision -> 120]

Formula

Equals lim n -> infinity A006958(n)^(1/n).
1/A276994 = 0.4330619231293906645846169654189837... is the smallest positive root of the equation Sum_{n>=0} ((-1)^n * z^(n*(n+1)/2) / (Product_{k=1..n} 1-z^k)^2) = 0.

A285175 Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns strictly increasing.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 5, 1, 7, 11, 1, 1, 11, 1, 13, 23, 9, 1, 7, 11, 11, 11, 25, 1, 51, 1, 1, 39, 13, 45, 23, 1, 15, 59, 25, 1, 135, 1, 41, 73, 17, 1, 9, 45, 73, 83, 61, 1, 45, 107, 63, 111, 19, 1, 135, 1, 21, 259, 1, 205, 279, 1, 85, 143, 349, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 26 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(15) = 11 tableaux:
1 2 3   1 2 4   1 3 4   1 2 5   1 3 5
4 5     3 5     2 5     3 4     2 4
.
1 2 3   1 2 3   1 2 4   1 2 4   1 3 4
2 4     3 4     2 3     3 4     2 4
.
1 2 3
2 3
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n===1,1,Sum[a[n/q*Times@@Cases[FactorInteger[q],{p_,k_}:>If[p===2,1,NextPrime[p,-1]^k]]],{q,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Array[a,100]

A067676 Number of fixed directed convex polyominoes with n cells.

Original entry on oeis.org

1, 2, 5, 13, 33, 82, 200, 481, 1144, 2699, 6329, 14775, 34381, 79819, 185001, 428290, 990716, 2290424, 5293153, 12229209, 28249088, 65246630, 150687282, 347993954, 803620981, 1855754764, 4285319033, 9895581541, 22850547145, 52765494456, 121843455307
Offset: 1

Views

Author

Steven Finch, Feb 04 2002

Keywords

Crossrefs

Cf. A006958, A067675 (fixed convex polyominoes), A191148 (fixed line-convex polycubes in 3 dimensions).

Extensions

More terms from Sean A. Irvine, Jan 02 2024

A246773 Decimal expansion of 'v', an auxiliary constant associated with the asymptotic number of row-convex polyominoes.

Original entry on oeis.org

3, 2, 0, 5, 5, 6, 9, 4, 3, 0, 4, 0, 0, 5, 9, 0, 3, 1, 1, 7, 0, 2, 0, 2, 8, 6, 1, 7, 7, 8, 3, 8, 2, 3, 4, 2, 6, 3, 7, 7, 1, 0, 8, 9, 1, 9, 5, 9, 7, 6, 9, 9, 4, 4, 0, 4, 7, 0, 5, 5, 2, 2, 0, 3, 5, 5, 1, 8, 3, 4, 7, 9, 0, 3, 5, 9, 1, 6, 7, 4, 6, 9, 1, 7, 6, 4, 1, 8, 2, 6, 9, 5, 7, 8, 0, 5, 2, 5, 0, 7, 8, 4, 9, 9
Offset: 1

Views

Author

Jean-François Alcover, Sep 03 2014

Keywords

Comments

Essentially the same digit sequence as A137421. - R. J. Mathar, Sep 06 2014

Examples

			3.20556943040059031170202861778382342637710891959769944...
		

Crossrefs

Programs

  • Mathematica
    v = Root[x^3 - 5*x^2 + 7*x - 4, x, 1]; RealDigits[v, 10, 104] // First

Formula

v = first root of x^3 - 5*x^2 + 7*x - 4 = (x-2)^3+(x-2)^2-(x-2)-2.
A001169(n) ~ u*v^n, where u = A246772.

A225114 Number of skew partitions of n whose diagrams have no empty rows and columns.

Original entry on oeis.org

1, 1, 3, 9, 28, 87, 272, 850, 2659, 8318, 26025, 81427, 254777, 797175, 2494307, 7804529, 24419909, 76408475, 239077739, 748060606, 2340639096, 7323726778, 22915525377, 71701378526, 224349545236, 701976998795, 2196446204672, 6872555567553, 21503836486190, 67284284442622, 210528708959146
Offset: 0

Views

Author

Joerg Arndt, Apr 29 2013

Keywords

Comments

A skew partition S of size n is a pair of partitions [p1,p2] where p1 is a partition of the integer n1, p2 is a partition of the integer n2, p2 is an inner partition of p1, and n=n1-n2. We say that p1 and p2 are respectively the inner and outer partitions of S. A skew partition can be depicted by a diagram made of rows of cells, in the same way as a partition. Only the cells of the outer partition p1 which are not in the inner partition p2 appear in the picture. [from the Sage manual, see links]

Examples

			The a(4)=28 skew partitions of 4 are
01:  [[4], []]
02:  [[3, 1], []]
03:  [[4, 1], [1]]
04:  [[2, 2], []]
05:  [[3, 2], [1]]
06:  [[4, 2], [2]]
07:  [[2, 1, 1], []]
08:  [[3, 2, 1], [1, 1]]
09:  [[3, 1, 1], [1]]
10:  [[4, 2, 1], [2, 1]]
11:  [[3, 3], [2]]
12:  [[4, 3], [3]]
13:  [[2, 2, 1], [1]]
14:  [[3, 3, 1], [2, 1]]
15:  [[3, 2, 1], [2]]
16:  [[4, 3, 1], [3, 1]]
17:  [[2, 2, 2], [1, 1]]
18:  [[3, 3, 2], [2, 2]]
19:  [[3, 2, 2], [2, 1]]
20:  [[4, 3, 2], [3, 2]]
21:  [[1, 1, 1, 1], []]
22:  [[2, 2, 2, 1], [1, 1, 1]]
23:  [[2, 2, 1, 1], [1, 1]]
24:  [[3, 3, 2, 1], [2, 2, 1]]
25:  [[2, 1, 1, 1], [1]]
26:  [[3, 2, 2, 1], [2, 1, 1]]
27:  [[3, 2, 1, 1], [2, 1]]
28:  [[4, 3, 2, 1], [3, 2, 1]]
		

Programs

  • PARI
    \\ The following program is significantly faster.
    A225114(n)=
    {
        my( C=vector(n, j, 1) );
        my(m=n, z, t, ret);
        while ( 1,  /* for all compositions C[1..m] of n */
    \\        print( vector(m, n, C[n] ) ); /* print composition */
            t = prod(j=2,m, min(C[j-1], C[j]) + 1 );  /* A225114 */
    \\        t = prod(j=2,m, min(C[j-1], C[j]) + 0 );  /* A006958 */
    \\        t = prod(j=2,m, C[j-1] + C[j] + 0 );  /* A059716 */
    \\        t = prod(j=2,m, C[j-1] + C[j] + 1 );  /* A187077 */
    \\        t = sum(j=2,m, C[j-1] > C[j] );  /* A045883 */
            ret += t;
            if ( m<=1, break() ); /* last composition? */
            /* create next composition: */
            C[m-1] += 1;
            z = C[m];
            C[m] = 1;
            m += z - 2;
        );
        return(ret);
    }
    for (n=0, 30, print1(A225114(n),", "));
    \\ Joerg Arndt, Jul 09 2013
  • Sage
    [SkewPartitions(n).cardinality() for n in range(16)]
    

Formula

Conjectured g.f.: 1/(2 - 1/(1 - x/(1 - x/(1 - x^2/(1 - x^2/(1 - x^3/(1 - x^3/(1 - ...)))))))). - Mikhail Kurkov, Sep 03 2024

Extensions

Edited by Max Alekseyev, Dec 22 2015

A227045 G.f.: 1/(1 - q/G(0)) where G(k) = 1 - q^(k+1) / (1 - q^(k+1) / G(k+1) ).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 95, 260, 713, 1959, 5386, 14815, 40759, 112151, 308609, 849240, 2337009, 6431246, 17698332, 48704714, 134032593, 368850417, 1015056867, 2793383746, 7687248186, 21154913043, 58217239536, 160210872557, 440892153268, 1213312738702, 3338974845151, 9188688696438
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2013

Keywords

Crossrefs

Cf. A006958 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226729 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226728 (g.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A227309 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).
Cf. A227310 (g.f.: 1/G(0), where G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ) ).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[nmax + 2] - Floor[Range[nmax + 2]/2])]]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+1) / G(k+1) ) );
    gf = 1 /(1- q/G(0));
    Vec(gf)

Formula

G.f.: 1/(1-q/ (1-q/(1-q/ (1-q^2/(1-q^2/ (1-q^3/(1-q^3/ (1-q^4/(1-q^4/ (1-q^5/(1-q^5/ (1-...))))))))))) ).
G.f. A(x) = 1/(1 - B(x)) where B(x) is the g.f. of A006958.
a(n) ~ c * d^n, where d = 2.751949072495748078279227332764623096815571855905843246297955690122791154... and c = 0.215973947378529032758849789768859077066690378163074586384819930605436492... - Vaclav Kotesovec, Sep 05 2017

A246772 Decimal expansion of 'u', an auxiliary constant associated with the asymptotic number of row-convex polyominoes.

Original entry on oeis.org

1, 8, 0, 9, 1, 5, 5, 0, 1, 8, 8, 1, 5, 6, 0, 6, 0, 9, 5, 1, 5, 8, 9, 5, 7, 7, 3, 0, 1, 0, 0, 0, 1, 8, 0, 0, 4, 9, 4, 4, 2, 9, 1, 0, 3, 3, 9, 9, 8, 8, 1, 0, 0, 0, 4, 9, 9, 5, 9, 4, 8, 3, 2, 4, 4, 3, 8, 9, 8, 1, 7, 8, 0, 8, 2, 4, 5, 6, 3, 2, 8, 6, 5, 8, 4, 2, 9, 4, 6, 2, 4, 4, 0, 7, 4, 9, 0, 4, 9, 1, 1, 5, 5
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2014

Keywords

Examples

			0.180915501881560609515895773010001800494429103399881...
		

Crossrefs

Programs

  • Mathematica
    u = Root[944*x^3 - 295*x^2 + 28*x - 1, x, 1]; RealDigits[u, 10, 103] // First

Formula

u = first root of 944*x^3 - 295*x^2 + 28*x - 1.
A001169(n) ~ u*v^n, where v = A246773.

A301412 G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x)/(1 - x*A(x)/(1 - x^2*A(x)/(1 - x^2*A(x)/(1 - x^3*A(x)/(1 - x^3*A(x)/(1 - ...))))))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 11, 46, 205, 957, 4614, 22803, 114898, 588052, 3048612, 15975922, 84489890, 450363757, 2417104782, 13050778500, 70841037919, 386357165119, 2116097719571, 11634392901981, 64188480019008, 355255552604237, 1971866447509917, 10973973061151433, 61222237473973758
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 20 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 205*x^5 + 957*x^6 + 4614*x^7 + 22803*x^8 + 114898*x^9 + ...
		

Crossrefs

A291378 Expansion of the series reversion of -1 + 1/(1 - x/(1 - x/(1 - x^2/(1 - x^2/(1 - x^3/(1 - x^3/(1 - ...))))))), a continued fraction.

Original entry on oeis.org

1, -2, 4, -9, 24, -74, 251, -902, 3359, -12802, 49588, -194445, 770099, -3076129, 12380317, -50162386, 204475572, -838014584, 3451174777, -14274905490, 59276495017, -247019567936, 1032709501505, -4330122550717, 18204993223606, -76728300335664, 324125242867935, -1372110743864550
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 23 2017

Keywords

Comments

Reversion of g.f. for A006958.

Crossrefs

Cf. A006958.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[-1 + 1/(1 + ContinuedFractionK[-x^Floor[(i + 1)/2], 1, {i, 1, nmax}]), {x, 0, 28}], x], x]]

Formula

G.f. A(x) satisfies: -1 + 1/(1 - A(x)/(1 - A(x)/(1 - A(x)^2/(1 - A(x)^2/(1 - A(x)^3/(1 - A(x)^3/(1 - ...))))))) = x.
a(n) ~ (-1)^(n+1) * c * d^n / n^(3/2), where d = 4.473956977950366804747779231113352537187229544... and c = 0.1202474525564857621186593278823505223773725... - Vaclav Kotesovec, May 07 2024

A291875 Expansion of 1 - x/(1 - x/(1 - x^2/(1 - x^2/(1 - x^3/(1 - x^3/(1 - x^4/(1 - x^4/ ...))))))), a continued fraction.

Original entry on oeis.org

1, -1, -1, -1, -2, -3, -6, -10, -19, -34, -63, -115, -213, -391, -723, -1333, -2463, -4547, -8403, -15522, -28686, -53006, -97963, -181042, -334606, -618415, -1142994, -2112545, -3904592, -7216810, -13338856, -24654268, -45568784, -84225393, -155675230
Offset: 0

Views

Author

Seiichi Manyama, Sep 04 2017

Keywords

Crossrefs

Cf. A006958, A227309, A291148 (similar sequence).

Formula

a(n) = -A227309(n-1) for n > 0.
Previous Showing 21-30 of 32 results. Next