A229202
Number of semimodular lattices on n nodes.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 8, 17, 38, 88, 212, 530, 1376, 3693, 10232, 29231, 85906, 259291, 802308, 2540635, 8220218, 27134483, 91258141, 312324027, 1086545705, 3838581926
Offset: 0
Cf.
A006966 (number of lattices),
A006981 (number of modular lattices).
A030268
Number of nonisomorphic connected partial lattices.
Original entry on oeis.org
1, 1, 1, 3, 9, 35, 153, 791, 4597, 29988, 215804, 1697291, 14457059, 132392971, 1295346365, 13468653637, 148142236784, 1716782858995, 20889118889021
Offset: 0
A278691
Number of graded lattices on n nodes.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 22, 60, 176, 565, 1980, 7528, 30843, 135248, 630004, 3097780, 15991395, 86267557, 484446620, 2822677523, 17017165987
Offset: 1
A373894
Number of self-dual lattices on n unlabeled nodes.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 7, 13, 36, 76, 232, 562, 1860, 5025
Offset: 0
a(5)=3: These are the three lattices.
o o o
| / \ /|\
o o | o o o
| | o \|/
o o | o
| \ /
o o
|
o
A030269
Number of nonisomorphic disconnected partial lattices.
Original entry on oeis.org
0, 0, 1, 2, 6, 18, 69, 287, 1397, 7634, 46972, 321014, 2416305, 19840547, 176267022, 1681915809, 17127587977, 185127766583
Offset: 0
A058801
Number of connected vertically indecomposable partial lattices on n unlabeled nodes.
Original entry on oeis.org
1, 2, 6, 25, 116, 625, 3757, 25140, 184511, 1473861, 12711339, 117598686, 1160399052, 12152333659, 134487937252, 1566878426731, 19154490559458
Offset: 2
A058802
Vertically decomposable lattices on n unlabeled nodes.
Original entry on oeis.org
1, 1, 3, 8, 26, 96, 414, 2040, 11432, 72022, 503973, 3875329, 32429747, 292872455, 2834089224, 29209213572, 318979706486
Offset: 3
- J. Heitzig and J. Reinhold, Counting finite lattices, preprint no. 298, Institut für Mathematik, Universität Hanover, Germany, 1999.
- J. Heitzig and J. Reinhold, Counting finite lattices, Algebra Universalis, 48 (2002), 43-53.
A159483
Number of tolerance simple lattices of order n.
Original entry on oeis.org
1, 1, 0, 0, 1, 1, 4, 14, 71, 389
Offset: 1
Tim Boykett (tim(AT)timesup.org), Apr 14 2009
The unique lattices of order 1 and 2 are tolerance simple. The lattices of order 3 and 4 are not. M_3 is of order 5 and is tolerance simple. M_4 is of order 6 and is tolerance simple. Then it gets complicated.
- K.Kaarli and A.F.Pixley, Polynomial Completeness in Algebraic Systems, Chapman & Hall/CRC, 2001
Original entry on oeis.org
1, 2, 4, 10, 46, 426, 6816, 164778, 5561666, 248740730, 14187451940, 1002045820690, 85615117761142, 8682866612715706, 1029036311254555560, 140656568448867136650, 21929110364021381812410, 3862525357012048643891882, 762298016068721625860646524
Offset: 0
A271077
Number of pseudocomplemented lattices on n nodes.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 10, 29, 99, 391, 1775, 9214
Offset: 0
Comments