cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A055739 [e^n]-th prime.

Original entry on oeis.org

2, 3, 17, 71, 251, 857, 2767, 8803, 27211, 82939, 249779, 744949, 2201273, 6463081, 18858529, 54764947, 158330573, 456016933, 1309050653, 3746543923, 10694444393, 30453898201, 86534078387, 245401348403, 694683409429, 1963275871663, 5540095680547, 15611517864749
Offset: 0

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Prime[Floor[N[E^n]]],{n,0,25}] (* Typographical error corrected by Harvey P. Dale, Dec 27 2019 *)

Formula

a(n) = prime(A000149(n)). - Amiram Eldar, Jul 22 2025

Extensions

a(25)-a(27) from Amiram Eldar, Jul 22 2025

A065857 The (10^n)-th composite number.

Original entry on oeis.org

4, 18, 133, 1197, 11374, 110487, 1084605, 10708555, 106091745, 1053422339, 10475688327, 104287176419, 1039019056246, 10358018863853, 103307491450820, 1030734020030318, 10287026204717358, 102692313540015924, 1025351434864118026, 10239531292310798956, 102270102190290407386
Offset: 0

Views

Author

Labos Elemer, Nov 26 2001

Keywords

Examples

			The 100th composite number is C(100)=133, while the 100th prime is 541. In general: A000720(m) < A062298(m) < m < A002808(m) < A000040(m), for example pi(100)=25 < 75 < 100 < C(100)=133 < prime(100)=541.
		

References

  • A. E. Bojarincev, Asymptotic expressions for the n-th composite number. Univ. Mat. Zap. 6:21-43(1967). [in Russian]
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 133, p. 45, Ellipses, Paris 2008.

Crossrefs

Programs

  • Mathematica
    Composite[n_Integer] := Block[ {k = n + PrimePi[n] + 1 }, While[ k != n + PrimePi[k] + 1, k = n + PrimePi[k] + 1]; Return[k]];
    Table[Composite[10^n], {n, 0, 9}]
  • PARI
    a(n)=my(k=10^n);forcomposite(n=4,2*k+2,if(k--==0,return(n))) \\ Charles R Greathouse IV, May 30 2013

Formula

a(n) = A002808(A011557(n)).
a(n) = 10^(n + n/log n + 2n/log^2 + 4n/log^3 n + O(n/log^4 n)). See Bojarincev for an asymptotic expansion. - Charles R Greathouse IV, May 30 2013

Extensions

More terms from Robert G. Wilson v, Nov 26 2001
a(14) from Lekraj Beedassy, Jul 14 2008
a(15)-a(19) from Chai Wah Wu, Apr 16 2018
a(20) from Chai Wah Wu, Aug 23 2018

A300397 a(n) = number of primes that end in 1 among the first 10^n primes.

Original entry on oeis.org

1, 24, 245, 2484, 24967, 249934, 2499755, 24999435, 249997579, 2499995131, 24999983109, 249999976990
Offset: 1

Views

Author

G. L. Honaker, Jr., Mar 05 2018

Keywords

Examples

			a(1) = 1 because the first 10 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, among which there is only one prime ending in 1.
		

Crossrefs

Programs

  • PARI
    a(n) = #select(x->((x % 10) == 1), primes(10^n)); \\ Michel Marcus, Mar 07 2018

Formula

a(n) = A185705(A006988(n)). - Michel Marcus, Mar 20 2018

Extensions

a(3)-a(8) from Chuck Gaydos
a(9) from Jon E. Schoenfield, Mar 20 2018
a(10)-a(12) from Giovanni Resta, Mar 27 2018

A300398 a(n) = number of primes that end in 3 among the first 10^n primes.

Original entry on oeis.org

3, 26, 253, 2515, 25007, 250110, 2500209, 25000135, 250002220, 2500000243, 25000027724, 250000009260
Offset: 1

Views

Author

G. L. Honaker, Jr., Mar 05 2018

Keywords

Examples

			a(1) = 3 because the first 10 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, among which there are three primes ending in 3.
		

Crossrefs

Programs

  • PARI
    a(n) = #select(x->((x % 10) == 3), primes(10^n)); \\ Michel Marcus, Mar 07 2018

Formula

a(n) = A185712(A006988(n)). - Michel Marcus, Mar 20 2018

Extensions

a(3)-a(8) from Chuck Gaydos
a(9) from Jon E. Schoenfield, Mar 20 2018
a(10)-a(12) from Giovanni Resta, Mar 27 2018

A300399 a(n) = number of primes that end in 7 among the first 10^n primes.

Original entry on oeis.org

2, 24, 254, 2508, 25015, 250014, 2500283, 25000402, 250002505, 2500005319, 25000014226, 250000051446
Offset: 1

Views

Author

G. L. Honaker, Jr., Mar 05 2018

Keywords

Examples

			a(1) = 2 because the first 10 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, among which there are two primes ending in 7.
		

Crossrefs

Programs

  • PARI
    a(n) = #select(x->((x % 10) == 7), primes(10^n)); \\ Michel Marcus, Mar 07 2018

Formula

a(n) = A185714(A006988(n)). - Michel Marcus, Mar 20 2018

Extensions

a(3)-a(8) from Chuck Gaydos
a(9) from Jon E. Schoenfield, Mar 20 2018
a(10)-a(12) from Giovanni Resta, Mar 27 2018

A300400 a(n) = number of primes that end in 9 among the first 10^n primes.

Original entry on oeis.org

2, 24, 246, 2491, 25009, 249940, 2499751, 25000026, 249997694, 2499999305, 24999974939, 249999962302
Offset: 1

Views

Author

G. L. Honaker, Jr., Mar 05 2018

Keywords

Examples

			a(1) = 2 because the first 10 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, among which there are two primes ending in 9.
		

Crossrefs

Programs

  • PARI
    a(n) = #select(x->((x % 10) == 9), primes(10^n)); \\ Michel Marcus, Mar 07 2018

Formula

a(n) = A185715(A006988(n)). - Michel Marcus, Mar 20 2018

Extensions

a(3)-a(8) from Chuck Gaydos
a(9) from Jon E. Schoenfield, Mar 20 2018
a(10)-a(12) from Giovanni Resta, Mar 27 2018

A335331 a(n) = prime(k) where k is the n-th 7-smooth number.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 43, 47, 53, 61, 71, 73, 89, 97, 103, 107, 113, 131, 149, 151, 173, 181, 197, 223, 227, 229, 251, 263, 281, 307, 311, 349, 359, 379, 409, 419, 433, 463, 503, 521, 541, 571, 593, 613, 659, 691, 701, 719, 761, 809, 827, 853, 863
Offset: 1

Views

Author

David A. Corneth, Jun 01 2020

Keywords

Comments

At A110069 we look for numbers of the form n = (d_1 + d_2 + ... + d_k)*prime(d_1*d_2*...*d_k) where d_1 d_2 ... d_k is the decimal expansion of n. As the largest prime that can be among the digits of a base-10 number is 7, the product of digits is 7-smooth. Hence the factor prime(d_1*d_2*...*d_k) is a term from this sequence. As lots of numbers have a product of digits of, say, 210^4, it would help to know prime(210^4) in advance. That's a(5817) of this sequence as 210^4 is the 5817th 7-smooth number. Precomputing such numbers is a computational benefit.

Crossrefs

A055680 (5^n)-th prime.

Original entry on oeis.org

2, 11, 97, 691, 4637, 28687, 171529, 994837, 5653807, 31643347, 174978379, 958200857, 5205329029, 28089376111, 150722620067, 804829625447, 4279524344539, 22671428650501, 119712643014673, 630280777956749, 3309723954037103, 17339016680833993, 90641632321932691, 472916224088644129, 2463008836130170681
Offset: 0

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Crossrefs

Programs

Extensions

a(17)-a(24) from Charles R Greathouse IV, Nov 02 2014

A065139 Numbers n such that the sum of prime(n) and pi(n) is divisible by n.

Original entry on oeis.org

1, 2, 7, 9, 23, 57, 149, 368, 921, 5863, 14531, 36087, 36255, 36257, 233084, 1505984, 1151321194, 1151321361, 7826138122, 967823489175, 967823489458, 967823489477, 967823489490, 967823489491, 2545928465925, 123116092093107, 123116092093185, 123116092094024
Offset: 1

Views

Author

Labos Elemer, Oct 16 2001

Keywords

Examples

			p(233084) = 3242497, Pi(233084) = 20679; sum = 3263176 = 14*233084; order of quotient is log(n).
(prime(1505984) + pi(1505984))/1505984 = (23981141 + 114603)/1505984 = 16.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ IntegerQ[ (Prime[n] + PrimePi[n]) /n ], Print[n]], {n, 1, 5*10^7} ]
    Select[ Range[10^8], IntegerQ[(Prime[ # ] + PrimePi[ # ])/ # ] & ]
  • PARI
    k=0;n=0;forprime(p=2,4e9,if(isprime(n++),k++);if((k+p)%n==0,print1(n", "))) \\ Charles R Greathouse IV, Aug 21 2011

Formula

Solutions to pi(x) + prime(x) = A000720(x) + A000040(x) = 0 (mod x).

Extensions

a(17)-a(19) from Donovan Johnson, Aug 21 2011
a(20)-a(28) from Giovanni Resta, Oct 15 2019

A099260 Number of decimal digits in (10^n)-th prime number.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

Rick L. Shepherd, Oct 10 2004

Keywords

Comments

As lim {n->oo} p_n/(n log n) = 1 is equivalent to the prime number theorem, a good first approximation (without having done any detailed analysis) should be a(n)=floor(log_10((10^n)*log(10^n))), which correctly generates all the first 22 terms and predicts that the sequence will continue 24,25,...,43,44,46,47,...,435,436,438,439,...,4344,4345,4347,4348,...,4503,4504 through the first 4500 terms (with only 5,45,437,4346 not appearing - compare with the digits of log_10(e) in A002285).
Many terms of this sequence can be determined exactly using Dusart's bounds. The first missing terms are 5, 44, 435, 4344, 43430, 434295, 4342946, 43429449, 434294483, 4342944820, ....

Examples

			a(4) = 6 because A006988(4) = prime(10^4) = 104729 has six decimal digits.
		

Crossrefs

Cf. A006988 ((10^n)-th prime), A006880 (pi(10^n)), A099261 (bit lengths).

Programs

  • Mathematica
    Table[IntegerLength[Prime[10^n]],{n,0,75}] (* Harvey P. Dale, Dec 11 2020 *)
  • PARI
    a(n)=if(n<3,return(n+1));my(l=n*log(10),ll=log(l),lb=ceil(log(l+ll-1+(ll-2.2)/l)/log(10)),ub=ceil(log(l+ll-1+(ll-2)/l)/log(10)));if(lb==ub,n+lb,error("Cannot determine a("n")"))

Extensions

Extension, comment, link, and Pari program from Charles R Greathouse IV, Aug 03 2010
Previous Showing 11-20 of 46 results. Next