cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A092252 a(n) = prime(prime(10^n)).

Original entry on oeis.org

3, 109, 3911, 80917, 1366661, 20491057, 285058399, 3767321791, 47991893393, 594421377761, 7201814452873, 85713609222697, 1005238339412819, 11644468481142713, 133472665317708923, 1516047373452105311
Offset: 0

Views

Author

Cino Hilliard, Feb 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Prime[Prime[10^n]], {n, 0, 10}] (* Amiram Eldar, Jun 29 2024 *)
  • PARI
    a(n) = prime(prime(10^n)); \\ Amiram Eldar, Jun 29 2024

Formula

a(n) = A006450(10^n) = A000040(A006988(n)). - Amiram Eldar, Jun 29 2024

Extensions

a(9)-a(10) from Dennis Kluk, Nov 27 2005
a(11)-a(15) using Kim Walisch's primecount added by Amiram Eldar, Jun 29 2024

A095178 Final digit of the (10^n)-th prime.

Original entry on oeis.org

2, 9, 1, 9, 9, 9, 3, 3, 3, 9, 3, 7, 3, 1, 7, 7, 9, 9, 1, 9, 7, 3, 9, 3, 3
Offset: 0

Views

Author

Cino Hilliard, Jun 21 2004

Keywords

Crossrefs

Programs

Formula

a(n) = A010879(A006988(n)).

Extensions

a(19)-a(24) added from the b-file at A006988 by Amiram Eldar, Mar 24 2021

A099261 Length in bits of (10^n)-th prime number.

Original entry on oeis.org

2, 5, 10, 13, 17, 21, 24, 28, 31, 35, 38, 42, 45, 49, 52, 56, 59, 62, 66, 69, 73, 76, 79, 83, 86, 89, 93, 96, 100, 103, 106, 110, 113, 116, 120, 123, 127, 130, 133, 137, 140, 143, 147, 150, 153, 157, 160, 163, 167, 170, 173, 177, 180, 184, 187, 190, 194, 197, 200, 204
Offset: 0

Views

Author

Rick L. Shepherd, Oct 11 2004

Keywords

Examples

			a(1) = 5 because A006988(1) = prime(10^1) = 29 = 11101 (base 2) has five bits.
		

Crossrefs

Cf. A006988 ((10^n)-th prime), A006880 (pi(10^n)), A007053 (pi(2^n)), A099260 (decimal digit lengths).

Programs

  • PARI
    a(n)=if(n<3,return([2,5,10][n+1]));my(l=n*log(10),ll=log(l),x=n*log(10)/log(2),lb=ceil(x+log(l+ll-1+(ll-2.2)/l)/log(2)),ub=ceil(x+log(l+ll-1+(ll-2)/l)/log(2)));if(lb==ub,lb,error("Cannot determine a("n")"))

Extensions

Extension, program, and reference from Charles R Greathouse IV, Aug 03 2010

A105463 The 10^n-th irregular prime.

Original entry on oeis.org

37, 257, 1669, 22349, 294001, 3553267, 41892163, 481303351
Offset: 0

Views

Author

Robert G. Wilson v, Apr 07 2005

Keywords

Crossrefs

Programs

  • Mathematica
    ip={ the list of irregular primes to 12 million }; Table[ ip[[10^n]], {n, 0, 5}]

Formula

a(n) = A000928(A011557(n)) = A000928(10^n). - Amiram Eldar, Mar 05 2019

Extensions

Offset changed and a(6)-a(7) added by Amiram Eldar, Mar 05 2019

A105468 Number of irregular primes less than or equal to the 10^n-th prime.

Original entry on oeis.org

0, 30, 392, 3935, 39400, 393737, 3933421, 39339651
Offset: 1

Views

Author

Robert G. Wilson v, Apr 07 2005

Keywords

Comments

Limit_{n->inf.} a(n)/10^n -> 1-e^(-1/2).

Crossrefs

Programs

  • Mathematica
    ip={ the list of irregular primes to 12 million }; Table[ Length[ Select[ip, # <= Prime[10^n] &]], {n, 5}]

Extensions

Data corrected and a(6)-a(8) added by Amiram Eldar, Mar 05 2019

A119780 a(n) = (100^n)-th prime.

Original entry on oeis.org

2, 541, 104729, 15485863, 2038074743, 252097800623, 29996224275833, 3475385758524527, 394906913903735329, 44211790234832169331, 4892055594575155744537, 536193870744162118627429, 58310039994836584070534263
Offset: 0

Views

Author

Jim Snow (jsnow(AT)mitre.org), Jun 22 2006

Keywords

Crossrefs

Bisection of A006988.

Formula

a(n) = A006988(2*n).

Extensions

a(7)-a(9) copied from A006988. - Max Alekseyev, May 11 2009
a(10)-a(12) copied from A006988. - Chai Wah Wu, Sep 19 2018

A120843 Initial digit of the (10^n)-th prime.

Original entry on oeis.org

2, 2, 5, 7, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Cino Hilliard, Aug 18 2006

Keywords

Comments

The algorithm in the PARI program approximates the (10^n)-th prime to an accuracy of roughly n/2 + 1 digits. As a result, we are almost certain to get the initial digit correctly. It remains to prove this. Since the Riemann approximation of pi(x) is used as a boundary in the exponential bisection routine, it would seem that a proof is possible in view of the fact that bisection almost always guarantees convergence. "Almost" is an appropriate term here, as will be demonstrated when we let the initial parameter r2 = 1. For example, we can toggle print(dx) to check the convergence. For primex(1e116), we get 9.999999999999999999999999970 E115.

Examples

			The (10^3)-th prime is 7919, so a(3)=7.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := RealDigits[ n (Log[n] + Log[Log[n]] - 1 + (Log[Log[n]] - 2)/Log[n] - (Log[Log[n]]^2 - 6 Log[Log[n]] + 11)/(2 Log[n]^2)), 10, 10][[1, 1]]; f[1] = f[10] = 2; f[100] = 5; Array[ f[10^#] &, 105, 0] (* Robert G. Wilson v, Jan 15 2017 *)
  • PARI
    g(n) = print1(2", "); for(x=1, n, y=Vec(Str(primex(10^x))); print1(y[1]", "))
    primex(n) = /* Efficient Algorithm to accurately approximate the n-th prime */ { local(x, px, r1, r2, r, p10, b, e); b=10; /*Select base*/ p10=log(n)/log(10); /*p10=pow of 10 n is to adjust in b^p10*/ if(Rg(b^p10*log(b^(p10+1)))< b^p10, m=p10+1, m=p10); r1 = 0; r2 = 2.718281828; /*Real kicker. if 1, it fails at 1e117*/ for(x=1, 360, r=(r1+r2)/2; px = Rg(b^p10*log(b^(m+r))); if(px <= b^p10, r1=r, r2=r); r=(r1+r2)/2.; ); (b^p10*log(b^(m+r))+.5); }
    Rg(x) = /* Gram's Riemann's Approx of Pi(x) */{ local(n=1, L, s=1, r); L=r=log(x); while(s<10^100*r, s=s+r/zeta(n+1)/n; n=n+1; r=r*L/n); (s) }

Formula

a(n) = most significant digit of A006988(n). - Robert G. Wilson v, Jan 17 2017
a(n) = A000030(A006988(n)). - Michel Marcus, Jan 18 2017

A215609 Smallest prime p congruent to 1 modulo prime(10^n).

Original entry on oeis.org

3, 59, 9739, 63353, 209459, 15596509, 154858631, 1794246731, 4076149487, 45603526979, 11092303227413, 93864728285579, 1319833868136653, 11656098322067917, 27803086068196217, 1781976386163140977, 32382366940106296979, 100447117955224696057, 707388643757314709297
Offset: 0

Views

Author

Zak Seidov, Aug 17 2012

Keywords

Examples

			a(0) = 3 because p = prime(1) = 2, 3 = 1+p.
a(1) = 59 because p = prime(10) = 29, 59 = 1+2*p.
a(2) = 9739 because p = prime(10) = 29, 59 = 1+18*p.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(If[n<2,3,p=Prime[n];r=2p+1;While[!PrimeQ[r],r=r+2p];r]);Table[a[10^n],{n,0,12}]

Formula

a(n) = A035095(10^n).

Extensions

a(13)-a(18) from Amiram Eldar, Apr 30 2024

A110900 Sum of the lesser of twin primes <= prime(10^n).

Original entry on oeis.org

65, 4803, 584914, 59273184, 6098138012, 616905504491, 62144914085485, 6267868143394323, 630501829011138256, 63335169132014778363
Offset: 1

Views

Author

Cino Hilliard, Sep 20 2005

Keywords

Comments

prime(n) = n-th prime number.
After the 3rd term, the next term is roughly 100 times the previous term.

Examples

			3, 5, 11, 17, and 29 are lesser members of twin primes <= prime(10^1) = 29. These add up to 65, the first term of this sequence.
		

Crossrefs

Programs

  • PARI
    lista(pmax) = {my(s = 0, pow = 10, prev = 2, k = 1); forprime(p = 3, pmax, k++; if(p == prev + 2, s += prev); if(k > pow, print1(s, ", "); pow *= 10); prev = p);} \\ Amiram Eldar, Jun 30 2024

Extensions

a(9)-a(10) from Amiram Eldar, Jun 30 2024

A117324 Prime(10^n) modulo semiprime(10^n).

Original entry on oeis.org

2, 3, 227, 729, 22965, 380555, 156346, 10920166, 202913258, 2973399074, 39284376410, 489544827463, 5874954672992
Offset: 0

Views

Author

Jonathan Vos Post, Mar 08 2006

Keywords

Examples

			prime(10^0) modulo semiprime(10^0) = 2 mod 4 = 2.
prime(10^1) modulo semiprime(10^1) = 29 mod 26 = 3.
prime(10^2) modulo semiprime(10^2) = 541 mod 314 = 227.
		

Formula

a(n) = A000040(10^n) modulo A001358(10^n). a(n) = A117322(10^n). a(n) = A006988(n) modulo A114125(n).

Extensions

a(12) from Zak Seidov
Previous Showing 31-40 of 46 results. Next