cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 140 results. Next

A077643 Number of squarefree integers in closed interval [2^n, -1 + 2*2^n], i.e., among 2^n consecutive numbers beginning with 2^n.

Original entry on oeis.org

1, 2, 3, 5, 9, 19, 39, 79, 157, 310, 621, 1246, 2491, 4980, 9958, 19924, 39844, 79672, 159365, 318736, 637457, 1274916, 2549816, 5099651, 10199363, 20398663, 40797299, 81594571, 163189087, 326378438, 652756861, 1305513511, 2611026987, 5222053970, 10444108084
Offset: 0

Views

Author

Labos Elemer, Nov 14 2002

Keywords

Comments

Number of squarefree numbers with binary expansion of length n, or with n bits. The sum of these numbers is given by A373123. - Gus Wiseman, Jun 02 2024

Examples

			For n=4: among the 16 numbers of {16, ..., 31}, nine are squarefree [17, 19, 21, 22, 23, 26, 29, 30, 31], so a(4) = 9.
		

Crossrefs

Partial sums (except first term) are A143658.
Run-lengths of A372475.
The minimum is A372683, delta A373125, indices A372540.
The maximum is A372889 (except at n=1), delta A373126, indices A143658.
Row-sums are A373123.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives nonempty lengths of exclusive gaps between squarefree numbers.
A029837 counts bits, row-lengths of A030190 and A030308.
For primes between powers of 2:
- sum A293697
- length A036378 or A162145
- min A104080 or A014210, delta A092131, indices A372684
- max A014234, delta A013603, indices A007053
For squarefree numbers between primes:
- sum A373197
- length A373198 = A061398 - 1
- min A000040
- max A112925 (delta A240473), opposite A112926 (delta A240474)
Cf. A010036, A029931, A035100, A049093-A049096, A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Apply[Plus, Table[Abs[MoebiusMu[2^w+j]], {j, 0, 2^w-1}]], {w, 0, 15}]
    (* second program *)
    Length/@Split[IntegerLength[Select[Range[10000],SquareFreeQ],2]]//Most (* Gus Wiseman, Jun 02 2024 *)
  • PARI
    { a(n) = sum(m=1,sqrtint(2^(n+1)-1), moebius(m) * ((2^(n+1)-1)\m^2 - (2^n-1)\m^2) ) } \\ Max Alekseyev, Oct 18 2008

Formula

a(n) = Sum_{j=0..-1+2^n} abs(mu(2^n + j)).
a(n)/2^n approaches 1/zeta(2), so limiting sequence is floor(2^n/zeta(2)), n >= 0. - Wouter Meeussen, May 25 2003

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 12 2003
More terms from Wouter Meeussen, May 25 2003
a(25)-a(32) from Max Alekseyev, Oct 18 2008
a(33)-a(34) from Amiram Eldar, Jul 17 2024

A059305 a(n) = pi(Mersenne(n)): index of n-th Mersenne prime.

Original entry on oeis.org

2, 4, 11, 31, 1028, 12251, 43390, 105097565, 55890484045084135, 10201730804263125133012340
Offset: 1

Views

Author

Reto Keiser (rkeiser(AT)ee.ethz.ch), Jan 25 2001

Keywords

Comments

Similar to A016027, but gives the number of the n-th Mersenne prime (rather than the number of the prime exponent).
A subsequence of A007053 and A086690.

Examples

			Element 2 = 4 because Mersenne2 = (2^3)-1 = 7; 7 is the 4th prime.
		

Crossrefs

Cf. A000043 Mersenne exponents, A000668 Mersenne primes, A016027 pi(mersenne exponents), A001348 Mersenne numbers.

Programs

  • Mathematica
    Array[PrimePi[2^MersennePrimeExponent[#] - 1] &, 8] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    LL(e) = if(e==2, return(1)); my(n, h); n = 2^e-1; h = Mod(2, n); for (k=1, e-2, h=2*h*h-1); return(0==h) \\ after Joerg Arndt in A000043
    forprime(p=1, , if(LL(p), print1(primepi(2^p-1), ", "))) \\ Felix Fröhlich, Apr 19 2019

Formula

a(n) = A000720(A000668(n))
a(n) = A007053(A000043(n))
A000668(n) = A000040(a(n)). - Omar E. Pol, Jun 29 2012

Extensions

Revised by Max Alekseyev, Jul 20 2007
a(10) from David Baugh, Oct 08 2020

A028505 Number of primes <= 100*n.

Original entry on oeis.org

25, 46, 62, 78, 95, 109, 125, 139, 154, 168, 184, 196, 211, 222, 239, 251, 266, 278, 290, 303, 317, 327, 342, 357, 367, 378, 393, 407, 419, 430, 442, 452, 463, 478, 489, 503, 516, 528, 539, 550, 565, 574, 590, 599, 610, 622, 634, 646, 654, 669, 681, 692, 702
Offset: 1

Views

Author

Chris Cole (chris(AT)questrel.com)

Keywords

References

  • Fred W. Helenius (fredh(AT)ix.netcom.com), posting to newsgroup rec.puzzles, Dec. 1997.

Crossrefs

Programs

A073517 Number of primes less than 10^n with initial digit 1.

Original entry on oeis.org

0, 4, 25, 160, 1193, 9585, 80020, 686048, 6003530, 53378283, 480532488, 4369582734, 40063566855, 369893939287, 3435376839800, 32069022099022, 300694113015105, 2830466318006780, 26735673312004455, 253315661161665338, 2406763761677705769, 22923886160712831134, 218839439542390117580
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 14 2002

Keywords

Examples

			a(2)=4 because there are 4 primes up to 10^2 whose initial digit is 1 (11, 13, 17 and 19).
		

Crossrefs

Cf. A000720 (pi), A073509 to A073517, their sum is A006880.
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509.

Programs

  • Mathematica
    f[n_] := f[n] = PrimePi[2*10^n] - PrimePi[10^n] + f[n - 1]; f[0] = 0; Table[ f[n], {n, 0, 13}]
  • PARI
    a(n,d=1)=sum(k=0, n-1, primepi((d+1)*10^k-1) - primepi(d*10^k-1)) \\ Andrew Howroyd, Dec 15 2024

Formula

a(n) = Sum_{k=0..n-1} pi(2*10^k-1) - pi(10^k-1). - Andrew Howroyd, Dec 15 2024

Extensions

Edited and extended by Robert G. Wilson v, Aug 29 2002
a(21)-a(22) added by David Baugh, Mar 21 2015
a(23) from Chai Wah Wu, Sep 18 2018
Offset corrected by Andrew Howroyd, Dec 15 2024

A038801 Number of primes less than 10n.

Original entry on oeis.org

4, 8, 10, 12, 15, 17, 19, 22, 24, 25, 29, 30, 31, 34, 35, 37, 39, 41, 42, 46, 46, 47, 50, 52, 53, 55, 57, 59, 61, 62, 63, 66, 66, 68, 70, 72, 73, 75, 77, 78, 80, 81, 82, 85, 87, 88, 91, 92, 93, 95, 97, 97, 99, 99, 101, 102, 104, 106, 107, 109, 111, 114, 114, 115, 118, 120
Offset: 1

Views

Author

Keywords

Comments

For almost all n, that is for a set of density 1, a(n) = a(n-1), and in all cases a(n) <= a(n-1) + 4. - Charles R Greathouse IV, Aug 27 2014

Crossrefs

Programs

Extensions

Edited and corrected by Robert G. Wilson v, Jan 29 2003

A073509 Number of primes less than 10^n with initial digit 9.

Original entry on oeis.org

0, 1, 15, 127, 1006, 8230, 70320, 614821, 5453140, 48982456, 444608278, 4070532710, 37535715441, 348245215460, 3247889171908, 30429496751905, 286235215995588, 2702000272361599, 25586688305447928, 242978340446949438, 2313264023790027111, 22074118786158858975
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 14 2002

Keywords

Examples

			a(2) = 1 because there is 1 prime less than 100 whose initial digit is 9, i.e., 97.
		

Crossrefs

A006880(n) = A073509(n)+ ... + A073516(n)+A073517(n-1).
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509

Programs

  • Mathematica
    f[n_] := f[n] = PrimePi[10^(n + 1)] - PrimePi[9*10^n] + f[n - 1]; f[0] = 0; Table[f[n], {n, 0, 12}]

Extensions

Edited and extended by Robert G. Wilson v, Aug 29 2002
a(20)-a(22) added by David Baugh, Mar 22 2015

A073510 Number of primes less than 10^n with initial digit 8.

Original entry on oeis.org

0, 2, 17, 127, 1003, 8326, 71038, 618610, 5481646, 49221187, 446590932, 4087194991, 37677478288, 349465615584, 3258501713644, 30522628848972, 287059041039078, 2709339704446862, 25652489700275636, 243571629996128384, 2318640708958531064, 22123070798400775157
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 14 2002

Keywords

Examples

			a(2)=2 because there are 2 primes up to 10^2 whose initial digit is 8 (namely 83 and 89).
		

Crossrefs

A006880(n) = A073509(n)+ ... + A073516(n)+A073517(n-1).
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509

Programs

  • Mathematica
    f[n_] := f[n] = PrimePi[9*10^n] - PrimePi[8*10^n] + f[n - 1]; f[0] = 0; Table[ f[n], {n, 0, 12}]

Extensions

Edited and extended by Robert G. Wilson v, Aug 29 2002
a(20)-a(22) added by David Baugh, Mar 22 2015

A073511 Number of primes less than 10^n with initial digit 7.

Original entry on oeis.org

1, 4, 18, 125, 1027, 8435, 71564, 622882, 5516130, 49495432, 448855139, 4106164356, 37838546363, 350849788546, 3270531245684, 30628143485953, 287992070079777, 2717649138419586, 25726964404879666, 244242934202964444, 2324722877951987037, 22178433287546997612
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 14 2002

Keywords

Examples

			a(2)=4 because there are 4 primes up to 10^2 whose initial digit is 7 (namely 7, 71, 73 and 79).
		

Crossrefs

Cf. A073509 to A073517, their sum is A006880.
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509

Programs

  • Mathematica
    f[n_] := f[n] = PrimePi[8*10^n] - PrimePi[7*10^n] + f[n - 1]; f[0] = 1; Table[ f[n], {n, 0, 12}]

Extensions

Edited and extended by Robert G. Wilson v, Aug 29 2002
a(20)-a(22) added by David Baugh, Mar 22 2015

A073512 Number of primes less than 10^n with initial digit 6.

Original entry on oeis.org

0, 2, 18, 135, 1013, 8458, 72257, 628206, 5556434, 49815418, 451476802, 4128049326, 38024311091, 352446754137, 3284400373590, 30749731897370, 289066731934716, 2727216210298152, 25812680778645432, 245015325044029789, 2331718909954888809, 22242097596092999144
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 14 2002

Keywords

Examples

			a(2)=2 because there are 2 primes up to 10^2 whose initial digit is 2 (namely 61 and 67).
		

Crossrefs

Cf. A073509 to A073517, their sum is A006880.
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509

Programs

  • Mathematica
    f[n_] := f[n] = PrimePi[7*10^n] - PrimePi[6*10^n] + f[n - 1]; f[0] = 0; Table[ f[n], {n, 0, 12}]

Extensions

Edited and extended by Robert G. Wilson v, Aug 29 2002
a(20)-a(22) added by David Baugh, Mar 22 2015

A073513 Number of primes less than 10^n with initial digit 5.

Original entry on oeis.org

1, 3, 17, 131, 1055, 8615, 72951, 633932, 5602768, 50193913, 454577490, 4153943134, 38243708524, 354330372215, 3300752009165, 30892997367352, 290332329192655, 2738477783884855, 25913537508233527, 245923809778144431, 2339944887042508496, 22316931815316988517
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 14 2002

Keywords

Examples

			a(2)=3 because there are 3 primes up to 10^2 whose initial digit is 5 (namely 5, 53 and 59).
		

Crossrefs

Cf. A073509 to A073517, their sum is A006880.
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509

Programs

  • Mathematica
    f[n_] := f[n] = PrimePi[6*10^n] - PrimePi[5*10^n] + f[n - 1]; f[0] = 1; Table[ f[n], {n, 0, 13}]

Extensions

Edited and extended by Robert G. Wilson v, Aug 29 2002
a(20)-a(22) added by David Baugh, Mar 22 2015
Previous Showing 11-20 of 140 results. Next