A356026 Main diagonal of right-and-left variant of Kimberling expulsion array, A007063.
1, 3, 5, 7, 4, 12, 10, 17, 6, 22, 15, 19, 24, 33, 31, 18, 8, 44, 35, 9, 39, 55, 26, 42, 29, 20, 14, 32, 58, 78, 76, 52, 38, 68, 74, 59, 67, 101, 27, 47, 88, 75, 61, 109, 50, 124, 54, 113, 41, 102, 119, 84, 34, 40, 136, 105, 71, 92, 131, 108, 28, 171, 169
Offset: 1
Keywords
Examples
Corner of the array (with terms of A356026 bracketed): [1] 2 3 4 5 6 2 [3] 4 5 6 7 2 4 [5] 6 7 8 4 6 2 [7] 8 9 2 8 6 9 [4] 10 9 10 6 11 8 [12]
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004; Section E35.
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = Join[{{1}}, NestList[ Flatten[{#, Range[Last[#] + 1, Last[#] + 3]} &[ Flatten[Transpose[{Reverse[#[[1]]], #[[2]]} &[ Partition[#, Length[#]/2] &[ Drop[#, {(Length[#] + 1)/2}] &[#]]]]]]] &, {2, 3, 4}, 200]]; Take[a, 9] // TableForm; (* the array, right-abbreviated *) Flatten[Map[Take[#, {(Length[#] + 1)/2}] &, a]] (* A356026 *) (* Peter J. C. Moses, Jul 23 2022 *) (* Alternate recursive code *) KL[i_, j_] := i + j - 1 /; (j >= 2 i - 3); KL[i_, j_] := KL[i - 1, i + (j - 2)/2] /; (EvenQ[j] && (j < 2 i - 3)); KL[i_, j_] := KL[i - 1, i - (j + 3)/2] /; (OddQ[j] && (j < 2 i - 3)); KL[i_] := KL[i] = KL[i, i]; SetAttributes[KL, Listable]; A356026[n_] := KL[n]; Array[A356026, 30] (* Enrique Pérez Herrero, Jan 12 2023 *)
-
PARI
KL(i,j) = { my(i1,j1); i1=i; j1=j; while(j1<(2*i1-3), if(j1%2, j1=i1-((j1+3)/2), j1=i1+((j1-2)/2) ); i1--; ); return(i1+j1-1); } A356026(i)=KL(i,i); \\ Enrique Pérez Herrero, Jan 12 2023
Comments