cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A003668 a(n) is smallest number which is uniquely a(j)+a(k), j

Original entry on oeis.org

2, 7, 9, 11, 13, 15, 16, 17, 19, 21, 25, 29, 33, 37, 39, 45, 47, 53, 61, 69, 71, 73, 75, 85, 89, 101, 103, 117, 133, 135, 137, 139, 141, 143, 145, 147, 151, 155, 159, 163, 165, 171, 173, 179, 187, 195, 197, 199, 201, 211, 215, 227, 229, 243, 259, 261, 263, 265, 267, 269
Offset: 1

Views

Author

Keywords

Comments

An Ulam-type sequence - see A002858 for many further references, comments, etc. - T. D. Noe, Jan 21 2008

References

  • R. K. Guy, "s-Additive sequences", preprint, 1994.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A100729.

Programs

  • Haskell
    a003668 n = a003668_list !! (n-1)
    a003668_list = 2 : 7 : ulam 2 7 a003668_list
    -- Function ulam as defined in A002858.
    -- Reinhard Zumkeller, Nov 03 2011
    
  • Mathematica
    Nest[Append[#, SelectFirst[Union@ Select[Tally@ Map[Total, Select[Permutations[#, {2}], #1 < #2 & @@ # &]], Last@ # == 1 &][[All, 1]], Function[k, FreeQ[#, k]]]] &, {2, 7}, 58] (* Michael De Vlieger, Nov 16 2017 *)
  • Python
    def aupton(terms):
      alst = [2, 7]
      for n in range(2, terms):
        sums = [alst[j]+alst[k] for j in range(n-1) for k in range(j+1, n)]
        alst.append(min([s for s in sums if sums.count(s)==1 and s > alst[-1]]))
      return alst
    print(aupton(60)) # Michael S. Branicky, Feb 07 2021

Formula

Akeran gives a formula.
For n>7, a(n+26)=a(n)+126. - T. D. Noe, Jan 21 2008

A003664 a(n) is smallest number larger than a(n-1) and not = a(j) + a(k), j < k.

Original entry on oeis.org

2, 5, 6, 9, 10, 13, 17, 20, 21, 24, 28, 32, 35, 36, 39, 43, 47, 50, 51, 54, 58, 62, 65, 66, 69, 73, 77, 80, 81, 84, 88, 92, 95, 96, 99, 103, 107, 110, 111, 114, 118, 122, 125, 126, 129, 133, 137, 140, 141, 144, 148, 152, 155, 156, 159, 163, 167, 170, 171, 174, 178, 182
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, "s-Additive sequences", preprint, 1994.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 117.

Crossrefs

Cf. A007300.

Programs

  • Magma
    I:=[2, 5, 6, 9, 10, 13, 17, 20, 21, 24, 28]; [n le 11 select I[n] else Self(n-1)+Self(n-5)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 10 2014
  • Mathematica
    Sort[Join[{10},Flatten[Table[15*n+{2,5,6,9,13},{n,0,12}]]]] (* Harvey P. Dale, Jul 12 2012 *)
    CoefficientList[Series[x(x^10 + 2*x^9 - 2 x^8 + 2 x^7 + x^6 + x^5 + x^4 + 3 x^3 + x^2 + 3 x + 2)/((x - 1)^2 (x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 10 2014 *)
  • PARI
    Vec(x*(x^10+2*x^9-2*x^8+2*x^7+x^6+x^5+x^4+3*x^3+x^2+3*x+2)/((x-1)^2*(x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Jul 09 2014
    

Formula

The numbers 2, 5, 6, 9, 13 mod 15, plus the number 10. - Ralf Stephan, Mar 28 2004
G.f.: x*(x^10 +2*x^9 -2*x^8 +2*x^7 +x^6 +x^5 +x^4 +3*x^3 +x^2 +3*x +2) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Jul 09 2014

A006844 a(1)=4, a(2)=5; thereafter a(n) is smallest number that is greater than a(n-1) and having a unique representation as a(j) + a(k) for j

Original entry on oeis.org

4, 5, 9, 13, 14, 17, 19, 21, 24, 25, 27, 35, 37, 43, 45, 47, 57, 67, 69, 73, 77, 83, 93, 101, 105, 109, 113, 115, 123, 125, 133, 149, 153, 163, 173, 197, 201, 205, 209, 211, 213, 217, 219, 227, 229, 235, 237, 239
Offset: 1

Views

Author

Keywords

Comments

This is the 1-additive sequence with base {4,5}. Apart from three extra terms (4, 14, 24) in the initial segment, this breaks up naturally into segments of 32 terms each. [Finch, 1992]. - N. J. A. Sloane, Aug 12 2015
An Ulam-type sequence - see A002858 for many further references, comments, etc. - T. D. Noe, Jan 21 2008

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 145-151.
  • R. K. Guy, "s-Additive sequences," preprint, 1994.
  • R. K. Guy, Unsolved Problems in Number Theory, Section C4.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a006844 n = a006844_list !! (n-1)
    a006844_list = 4 : 5 : ulam 2 5 a006844_list
    -- Function ulam as defined in A002858.
    -- Reinhard Zumkeller, Nov 03 2011
  • Mathematica
    s = {4, 5}; n0 = 9; dn = 32; m = 192; Do[ AppendTo[s, n = Last[s]; While[n++; Length[ DeleteCases[ Intersection[s, n - s], n/2, 1, 1]] != 2]; n], {n0 + dn}]; Clear[a]; a[n_] := a[n] = If[n <= n0 + dn, s[[n]], a[n - dn] + m]; Table[a[n], {n, 1, 200}] (* Jean-François Alcover, Apr 03 2013 *)

Formula

For n>9, a(n+32) = a(n) + 192. - T. D. Noe, Jan 21 2008

A117140 a(1)=5, a(2)=7; for n >= 3, a(n) is smallest number which is uniquely of the form a(j)+a(k) with 1<=j

Original entry on oeis.org

5, 7, 12, 17, 19, 22, 26, 27, 32, 33, 36, 37, 40, 42, 46, 50, 56, 60, 66, 70, 71, 74, 81, 85, 91, 99, 101, 132, 138, 140, 150, 154, 156, 158, 160, 179, 181, 185, 189, 195, 205, 209, 233, 234, 236, 240, 248, 258, 264, 268, 287, 289, 293, 297, 303, 336, 340, 342, 348
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2006

Keywords

Comments

An Ulam-type sequence - see A002858 for many further references, comments, etc.
Does not seem to have any nice periodicity like A007300 does. - Joshua Zucker, May 24 2006

Programs

Extensions

More terms from Joshua Zucker, May 24 2006

A003669 a(n) is smallest number which is uniquely a(j) + a(k), j < k.

Original entry on oeis.org

3, 4, 7, 10, 11, 13, 15, 16, 21, 22, 27, 30, 35, 36, 41, 44, 50, 53, 55, 61, 69, 70, 75, 78, 84, 87, 92, 93, 98, 101, 107, 112, 118, 121, 132, 135, 138, 141, 149, 150, 164, 166, 169, 175, 178, 189, 192, 195, 197, 198, 206, 212, 215, 223, 232, 252, 254, 255, 263, 269
Offset: 1

Views

Author

Keywords

Comments

An Ulam-type sequence - see A002858 for many further references, comments, etc. - T. D. Noe, Jan 21 2008

References

  • R. K. Guy, "s-Additive sequences", preprint, 1994.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a003669 n = a003669_list !! (n-1)
    a003669_list = 3 : 4 : ulam 2 4 a003669_list
    -- Function ulam as defined in A002858.
    -- Reinhard Zumkeller, Nov 03 2011
  • Mathematica
    Nest[Append[#, SelectFirst[Union@ Select[Tally@ Map[Total, Select[Permutations[#, {2}], #1 < #2 & @@ # &]], Last@ # == 1 &][[All, 1]], Function[k, FreeQ[#, k]]]] &, {3, 4}, 58] (* Michael De Vlieger, Nov 16 2017 *)

A003670 a(n) is smallest number which is uniquely a(j)+a(k).

Original entry on oeis.org

4, 7, 11, 15, 18, 19, 23, 25, 27, 31, 32, 33, 35, 41, 47, 49, 55, 57, 61, 63, 75, 87, 89, 91, 105, 119, 121, 125, 129, 133, 139, 147, 153, 161, 185, 189, 203, 206, 213, 225, 233, 235, 241, 243, 251, 257, 259, 265, 273, 281, 285, 293, 295, 303, 305, 307, 309, 317
Offset: 1

Views

Author

Keywords

Comments

Sequence is periodic mod 11301098.
An Ulam-type sequence - see A002858 for many further references, comments, etc. - T. D. Noe, Jan 21 2008

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 145-151.
  • R. K. Guy, "s-Additive sequences", preprint, 1994.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a003670 n = a003670_list !! (n-1)
    a003670_list = 4 : 7 : ulam 2 7 a003670_list
    -- Function ulam as defined in A002858.
    -- Reinhard Zumkeller, Nov 03 2011
  • Mathematica
    Nest[Append[#, SelectFirst[Union@ Select[Tally@ Map[Total, Select[Permutations[#, {2}], #1 < #2 & @@ # &]], Last@ # == 1 &][[All, 1]], Function[k, FreeQ[#, k]]]] &, {4, 7}, 56] (* Michael De Vlieger, Nov 16 2017 *)

A078425 Primes in "Ulam's Prime sequence". A prime is in the sequence iff p+1 can be expressed in exactly 1 way as the sum of 2 previous distinct primes.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 29, 41, 43, 59, 83, 89, 107, 109, 127, 139, 157, 163, 173, 199, 211, 223, 257, 271, 277, 293, 307, 331, 347, 367, 397, 421, 443, 457, 491, 541, 557, 587, 601, 631, 691, 761, 769, 821, 911, 941, 971, 991, 1009, 1033, 1103, 1129, 1153, 1201
Offset: 1

Views

Author

Jon Perry, Dec 29 2002

Keywords

Comments

a(1) = 3, a(2) = 5; for n >= 3, a(n) is smallest prime which is uniquely a(j) + a(k) - 1, with 1<= j < k < n.
Is the (3,5) sequence finite or infinite? Note that (3,7) as a starting sequence has only 2 terms and (7,11) yields 7, 11, 17, 23, 29 only. Equally using -1 as a rule creates more variants.
The sequence continues at least up to a(2227) = 400031.
After about 500 terms, the graph of this sequences appears almost linear. - T. D. Noe, Jan 20 2008

Examples

			a(3)=7 as 8=3+5. a(4)=11 as 12=5+7 (and nothing else).
		

Crossrefs

Programs

  • PARI
    v=vector(1220);vc=2;v[1]=3;v[2]=5; forprime (p=7,1220,p1=p+1;pc=0;fl=0;for (i=1,vc-1, for (j=i+1,vc,if (v[i]+v[j]==p1,pc++);if (pc>1,fl=1);if (fl,break));if (fl,break));if (pc==0,fl=1);if (!fl,vc++;v[vc]=p));print(vecextract(v,concat("1..",vc)))

Extensions

Edited and extended by Klaus Brockhaus, Apr 14 2005
Previous Showing 11-17 of 17 results.