A202060
Number of ascent sequences avoiding the pattern 110.
Original entry on oeis.org
1, 1, 2, 5, 14, 43, 143, 510, 1936, 7774, 32848, 145398, 671641, 3227218, 16084747, 82955090, 441773793, 2424845273, 13695855478, 79485625385, 473393639992, 2889930405750, 18064609329598, 115513453404597, 754956282308784, 5039064184597772, 34323984497482559
Offset: 0
- Andrew Conway and Miles Conway, Table of n, a(n) for n = 0..43
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- P. Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641, 2011
A202061
Number of ascent sequences avoiding the pattern 120.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 133, 442, 1535, 5546, 20754, 80113, 317875, 1292648, 5374073, 22794182, 98462847, 432498659, 1929221610, 8728815103, 40017844229, 185727603829, 871897549029, 4137132922197, 19828476952117, 95934298966615, 468291607852143, 2305162065138433
Offset: 0
- Liang Chengwei, Shi Lecun and Cai Zhongyu, Table of n, a(n) for n = 0..500 (terms 0..74 from Andrew Conway and Miles Conway)
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- Paul Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
A270447
Binomial transform(2) of Catalan numbers.
Original entry on oeis.org
1, 3, 11, 43, 174, 721, 3044, 13059, 56837, 250690, 1119612, 5059561, 23119628, 106753404, 497762380, 2342096579, 11113027686, 53138757319, 255892224332, 1240217043450, 6046131132030, 29631889507380, 145923474439800, 721733515299225, 3583733352377724
Offset: 0
-
Table[Sum[Binomial[2*k,k]/(k+1) * Binomial[2*n-k,n], {k,0,n}], {n,0,25}] (* Vaclav Kotesovec, Mar 17 2016 *)
a[n_] := ((2 n + 1) Binomial[2 n, n] (1 - Hypergeometric2F1[-1/2, -n - 1, -2 n - 1, 4]))/(2 (n + 1));
Table[a[n], {n, 0, 24}] (* Peter Luschny, May 30 2022 *)
-
a(n):=sum((binomial(2*k,k)*binomial(2*n-k,n))/(k+1),k,0,n);
-
a(n) = sum(i=0, n, (binomial(2*i, i)*binomial(2*n-i, n))/(i+1)); \\ Altug Alkan, Mar 17 2016
A304788
Expansion of e.g.f. exp(Sum_{k>=1} binomial(2*k,k)*x^k/(k + 1)!).
Original entry on oeis.org
1, 1, 3, 12, 59, 343, 2295, 17307, 144751, 1326377, 13189945, 141271298, 1619488645, 19766050827, 255693112641, 3492065507376, 50180426293255, 756444290843433, 11930511611596861, 196404976143077964, 3367697323914503113, 60029614473492823771, 1110430594720934758781
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 12*x^3/3! + 59*x^4/4! + 343*x^5/5! + 2295*x^6/6! + 17307*x^7/7! + ...
-
a:=series(exp(add(binomial(2*k,k)*x^k/(k+1)!,k=1..100)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[Exp[Sum[CatalanNumber[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Exp[2 x] (BesselI[0, 2 x] - BesselI[1, 2 x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[CatalanNumber[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
A340968
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j*binomial(n,j)*Catalan(j).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 15, 1, 1, 5, 25, 71, 51, 1, 1, 6, 41, 199, 441, 188, 1, 1, 7, 61, 429, 1795, 2955, 731, 1, 1, 8, 85, 791, 5073, 17422, 20805, 2950, 1, 1, 9, 113, 1315, 11571, 64469, 177463, 151695, 12235, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 5, 13, 25, 41, 61, ...
1, 15, 71, 199, 429, 791, ...
1, 51, 441, 1795, 5073, 11571, ...
1, 188, 2955, 17422, 64469, 181776, ...
-
T_row := n -> k -> hypergeom([1/2, -n], [2], -4*k): for n from 0 to 6 do seq(simplify(T_row(n)(k)), k = 0..6) od; # Peter Luschny, Aug 27 2025
-
T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * CatalanNumber[j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
A340968[n_, k_] := Hypergeometric2F1[1/2, -n, 2, -4*k]; Table[A340968[n, k], {n, 0, 6}, {k, 0, 7}] (* row-wise *) (* Peter Luschny, Aug 27 2025 *)
-
T(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*j)!/(j!*(j+1)!));
-
T(n, k) = 1+k*sum(j=0, n-1, T(j, k)*T(n-1-j, k));
A348858
G.f. A(x) satisfies: A(x) = 1 / ((1 - x) * (1 - x * A(3*x))).
Original entry on oeis.org
1, 2, 9, 103, 3101, 261192, 64285189, 47059492688, 103060910397021, 676492249628112382, 13317427360663454672669, 786420726604930579016189223, 139314431838014895142151741877241, 74037818920801629179455290512454633872, 118040419689979917511971388549088825283510249
Offset: 0
-
nmax = 14; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[3 x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = 1 + Sum[3^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 14}]
A360322
a(n) = Sum_{k=0..n} (-5)^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, -4, 10, -30, 102, -376, 1462, -5900, 24470, -103644, 446382, -1948854, 8605290, -38362200, 172423770, -780496110, 3554991270, -16281079900, 74927379550, -346328465930, 1607078948690, -7483861047480, 34963419415650, -163825013554400, 769694347677002
Offset: 0
-
a(n) = sum(k=0, n, (-5)^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1+5*x)/(1+x)))
A367692
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x^4))).
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 13, 20, 29, 43, 66, 102, 155, 233, 352, 536, 817, 1240, 1878, 2848, 4327, 6576, 9984, 15150, 22995, 34919, 53029, 80513, 122224, 185556, 281736, 427776, 649481, 986054, 1497069, 2272976, 3451038, 5239607, 7955067, 12077876, 18337503
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, (i-1)\4, v[j+1]*v[i-4*j])); v;
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A367692(n): return 1+sum(A367692(k)*A367692(n-1-(k<<2)) for k in range(n+3>>2)) # Chai Wah Wu, Nov 30 2023
A369616
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^2 + x) ).
Original entry on oeis.org
1, 3, 12, 58, 314, 1824, 11107, 69955, 451918, 2977834, 19936332, 135225006, 927267595, 6417580459, 44770275705, 314489676679, 2222549047262, 15791353483602, 112734135824404, 808247711066688, 5817056710700424, 42012120642574732, 304384379305912686
Offset: 0
-
A369616 := proc(n)
add(binomial(n+1,k) * binomial(3*n-3*k+1,n-k),k=0..n) ;
%/(n+1) ;
end proc;
seq(A369616(n),n=0..70) ; # R. J. Mathar, Jan 28 2024
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^2+x))/x)
-
a(n) = sum(k=0, n, binomial(n+1, k)*binomial(3*n-3*k+1, n-k))/(n+1);
A369617
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^3 + x) ).
Original entry on oeis.org
1, 4, 22, 146, 1079, 8525, 70468, 601816, 5268241, 47019566, 426250277, 3914020148, 36328457669, 340278596273, 3212416054283, 30534649412247, 291981031204917, 2806832429353512, 27109863184695640, 262951127248539898, 2560229132085602215
Offset: 0
-
A369617 := proc(n)
add(binomial(n+1,k) * binomial(4*n-4*k+2,n-k),k=0..n) ;
%/(n+1) ;
end proc;
seq(A369617(n),n=0..70) ; # R. J. Mathar, Jan 28 2024
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^3+x))/x)
-
a(n) = sum(k=0, n, binomial(n+1, k)*binomial(4*n-4*k+2, n-k))/(n+1);
Comments