cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A328944 Arithmetic numbers (A003601) that are not harmonic (A001599).

Original entry on oeis.org

3, 5, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78, 79, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 101
Offset: 1

Views

Author

Jaroslav Krizek, Oct 31 2019

Keywords

Comments

Numbers m such that the arithmetic mean of the divisors of m is an integer but the harmonic mean of the divisors of m is not an integer.
Numbers m such that A(m) = A000203(m)/A000005(m) is an integer but H(m) = m * A000005(m)/A000203(m) is not an integer.
Corresponding values of A(m): 2, 3, 4, 6, 7, 6, 6, 9, 10, 7, 8, 9, 12, 10, 15, 9, 16, 12, 12, 19, 15, 14, 21, 12, 22, ...
Corresponding values of H(m): 3/2, 5/3, 7/4, 11/6, 13/7, 7/3, 5/2, 17/9, 19/10, 20/7, 21/8, 22/9, ...
Complement of A007340 with respect to A003601.

Crossrefs

Programs

  • Magma
    [m: m in [1..10^5] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and not IsIntegral(m * NumberOfDivisors(m) / SumOfDivisors(m))];
  • Maple
    harm:= proc(S) local s; nops(S)/add(1/s,s=S) end proc:
    filter:= proc(n) local S;
      S:= numtheory:-divisors(n);
      (convert(S,`+`)/nops(S))::integer and not harm(S)::integer
    end proc:
    select(filter, [$1..200]); # Robert Israel, May 04 2025
  • Mathematica
    Select[Range[100], Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] && !Divisible[# * DivisorSigma[0, #], DivisorSigma[1, #]] &] (* Amiram Eldar, Nov 01 2019 *)

A328945 Numbers m that are neither arithmetic (A003601) nor harmonic (A001599).

Original entry on oeis.org

2, 4, 8, 9, 10, 12, 16, 18, 24, 25, 26, 32, 34, 36, 40, 48, 50, 52, 58, 63, 64, 72, 74, 75, 76, 80, 81, 82, 84, 88, 90, 98, 100, 104, 106, 108, 112, 117, 120, 121, 122, 124, 128, 130, 136, 144, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175, 176, 178, 180
Offset: 1

Views

Author

Jaroslav Krizek, Oct 31 2019

Keywords

Comments

Numbers m such that neither the arithmetic mean of the divisors of m nor the harmonic mean of the divisors of m is an integer.
Numbers m such that neither A(m) = A000203(m)/A000005(m) nor H(m) = m * A000005(m)/A000203(m) is an integer.
Corresponding values of A(m): 3/2, 7/3, 15/4, 13/3, 9/2, 14/3, 31/5, 13/2, 15/2, 31/3, 21/2, 21/2, 27/2, ...
Corresponding values of H(m): 4/3, 12/7, 32/15, 27/13, 20/9, 18/7, 80/31, 36/13, 16/5, 75/31, 52/21, 64/21, ...

Crossrefs

Programs

  • Magma
    [m: m in [1..10^5] | not IsIntegral(m * NumberOfDivisors(m) / SumOfDivisors(m)) and not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m))]
    
  • Maple
    filter:= proc(n) local D,d,t;
      D:=numtheory:-divisors(n);
      d:= nops(D);
      convert(D,`+`) mod d <> 0 and not ((d/add(1/t,t=D))::integer)
    end proc:
    select(filter, [$1..200]); # Robert Israel, Dec 14 2023
  • Mathematica
    Select[Range[180], !Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] && !Divisible[# * DivisorSigma[0, #], DivisorSigma[1, #]] &] (* Amiram Eldar, Nov 01 2019 *)
  • PARI
    isok(m) = my(f = factor(m), prd = sigma(f)/numdiv(f)); (denominator(prd) != 1) && (denominator(m/prd) != 1); \\ Michel Marcus, Nov 05 2019

A361387 Infinitary arithmetic numbers k whose mean infinitary divisor is an infinitary divisor of k.

Original entry on oeis.org

1, 6, 60, 270, 420, 630, 2970, 5460, 8190, 36720, 136500, 172900, 204750, 245700, 491400, 790398, 791700, 819000, 1037400, 1138320, 1187550, 1228500, 1801800, 2457000, 3767400, 4176900, 4504500, 5405400, 6397300, 6688500, 6741630, 7698600, 8353800, 10032750, 10228680
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2023

Keywords

Comments

Also, infinitary harmonic numbers k whose harmonic mean of the infinitary divisors of k is an infinitary divisor of k.

Examples

			6 is a term since the arithmetic mean of its infinitary divisors, {1, 2, 3, 6}, is 3, and 3 is also an infinitary divisor of 6.
60 is a term since the arithmetic mean of its infinitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, is 15, and 15 is also an infinitary divisor of 60.
		

Crossrefs

Subsequence of A063947 and A361386.
Similar sequence: A007340, A353039.

Programs

  • Mathematica
    idivs[1] = {1}; idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])]; Select[Range[10^5], IntegerQ[(r = Mean[(i = idivs[#])])] && MemberQ[i, r] &]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } \\ Michel Marcus at A077609
    is(n) = {my(f = factor(n), b, r); r = prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], (f[i, 1]^(2^(#b-k))+1)/2, 1))); denominator(r) == 1 && n%r==0 && isidiv(r, f); }

A157850 Numbers k such that are harmonic means of divisors of harmonic (Ore) numbers (harmonic numbers is A001599) and equal to one of the divisors of this harmonic numbers.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 11, 10, 15, 15, 14, 17, 24, 24, 21, 13, 19, 27, 25, 29, 26, 44, 44, 29, 46, 39, 46, 42, 47, 47, 35, 41, 60, 51, 37, 48, 45, 49, 50, 49, 53, 77, 86, 86, 51, 96, 75, 70, 80, 99, 110, 81, 84, 102, 82, 96, 114, 53, 108, 115, 105, 116, 91, 85, 105
Offset: 1

Views

Author

Jaroslav Krizek, Mar 07 2009, Apr 12 2009

Keywords

Examples

			a(3) = 5, because 5 is harmonic mean of divisors of A007340(3)=140 and also is divisor of 140.
		

Crossrefs

Formula

a(n) = f(A007340(n)), where f(k) = k * tau(k)/sigma(k) = k * A000005(k)/A000203(k).

Extensions

More terms from Amiram Eldar, Jul 09 2019

A331666 Refactorable numbers (A033950) that are simultaneously arithmetic (A003601) and harmonic (A001599).

Original entry on oeis.org

1, 672, 30240, 23569920, 45532800, 164989440, 447828480, 623397600, 1381161600, 1862023680, 2144862720, 3134799360, 3831421440, 13584130560, 14182439040, 16569653760, 21943595520, 22933532160, 34482792960, 35032757760, 40752391680, 53621568000, 56481384960
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2020

Keywords

Comments

Numbers m such that all values of sigma(m)/tau(m), m/tau(m) and m * tau(m)/sigma(m) are any integers (f, g, and h respectively).
Corresponding values of numbers f, g and h: (1, 84, 1260, 294624, 474300, 1178496, 2946240, 3298400, 5754840, 11784960, ...); (1, 28, 315, 73656, 118575, 257796, 699732, 721525, 1198925, 2909412, 1675674, ...); (1, 8, 24, 80, 96, 140, 152, 189, 240, 158, 260, 266, 220, 380, 384, 296, 392, ...).
Multiply-perfect numbers from this sequence are in A047728.

Examples

			For m = 672, f = sigma(m)/tau(m) = 2016/24 = 84; g = m/tau(m) = 672/24 = 28; h = m * tau(m)/sigma(m) = 672*24/2016 = 8.
		

Crossrefs

Intersection of A033950 and A007340.

Programs

  • Magma
    [m: m in [1..10^6] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and  IsIntegral(m / NumberOfDivisors(m)) and IsIntegral(m * NumberOfDivisors(m) / SumOfDivisors(m))]
    
  • Mathematica
    Select[Range[3*10^7], Divisible[#, (d = DivisorSigma[0, #])] && Divisible[(s = DivisorSigma[1, #]), d] && Divisible[#*d, s] &] (* Amiram Eldar, Jan 24 2020 *)
  • PARI
    is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(k % d) && !(s % d) && !((k * d) % s) ;} \\ Amiram Eldar, May 09 2024

A361787 Bi-unitary arithmetic numbers k whose mean bi-unitary divisor is a bi-unitary divisor of k.

Original entry on oeis.org

1, 6, 60, 270, 420, 630, 672, 2970, 5460, 8190, 10080, 22848, 30240, 99792, 136500, 172900, 204750, 208656, 245700, 249480, 312480, 332640, 342720, 385560, 491400, 695520, 708288, 791700, 819000, 861840, 1028160, 1037400, 1187550, 1228500, 1421280, 1528800, 1571328
Offset: 1

Views

Author

Amiram Eldar, Mar 24 2023

Keywords

Comments

Also, bi-unitary harmonic numbers k whose harmonic mean of the bi-unitary divisors of k is a bi-unitary divisor of k.

Examples

			6 is a term since the arithmetic mean of its bi-unitary divisors, {1, 2, 3, 6}, is 3, and 3 is also a bi-unitary divisor of 6.
60 is a term since the arithmetic mean of its bi-unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, is 15, and 15 is also a bi-unitary divisor of 60.
		

Crossrefs

Subsequence of A286325 and A361786.
Similar sequence: A007340, A353039, A361387.

Programs

  • Mathematica
    biudivQ[f_, d_] := AllTrue[f, OddQ[Last[#]] || IntegerExponent[d, First[#]] != Last[#]/2 &]; biuDivs[n_] := Module[{d = Divisors[n], f = FactorInteger[n]}, Select[d, biudivQ[f, #] &]]; Select[Range[10^5], IntegerQ[(r = Mean[(i = biuDivs[#])])] && MemberQ[i, r] &]
  • PARI
    isbdiv(f, d) = {for (i=1, #f~, if(f[i, 2]%2 == 0 && valuation(d, f[i, 1]) == f[i, 2]/2, return(0))); 1;}
    is(n) = {my(f = factor(n), r, p, e); r = prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (p^(e+1)-1)/((e + 1)*(p-1)), ((p^(e+1)-1)/(p-1)-p^(e/2))/e)); denominator(r) == 1 && n%r==0 && isbdiv(f, r); }

A342358 Balanced numbers (A020492) that are also arithmetic numbers (A003601) and harmonic numbers (A001599).

Original entry on oeis.org

1, 6, 140, 270, 2970, 332640, 14303520, 5297292000
Offset: 1

Views

Author

Bernard Schott, Mar 09 2021

Keywords

Comments

Equivalently, numbers m such that sigma(m)/phi(m), sigma(m)/tau(m) and m*tau(m)/sigma(m) are all integers where phi = A000010, tau = A000005 and sigma = A000203.
Conjecture: 1 would be the only odd term of this sequence, because Oystein Ore conjectured that 1 is the only odd harmonic number (see link), and 1 is an arithmetic and balanced number (A342103).
Proposition: there are no primes in the sequence. Proof: the only prime that is both arithmetic and balanced is 3 (A342103), but 3 is not an harmonic number.
As Hans-Joachim Kanold (1957) proved that the asymptotic density of the harmonic numbers is 0 (see link), the asymptotic density of this sequence is also 0.
a(9) > 6.5*10^14 (verified using list of balanced numbers from Jud McCranie). All the numbers in this range that are both balanced and harmonic numbers are also arithmetic numbers. - Amiram Eldar, Mar 09 2021

Examples

			For 6: tau(6) = 4, phi(6) = 2, sigma(6) = 12, 6*tau(6)/sigma(6) = 6*4/12 = 2, sigma(6)/tau(6) = 3 and sigma(6)/phi(6) = 2, hence 6 is a term.
		

Crossrefs

Intersection of A001599, A003601 and A020492.
Intersection of A001599 and A342103.
Intersection of A007340 and A020492.

Programs

  • Maple
    with(numtheory): filter:= q -> (sigma(q) mod phi(q) = 0) and (sigma(q) mod tau(q) = 0 and (q*tau(q) mod sigma(q) = 0) : select(filter, [$1..300000]);
  • Mathematica
    Select[Range[350000], And @@ Divisible[(s = DivisorSigma[1, #]), {(d = DivisorSigma[0, #]), EulerPhi[#]}] && Divisible[#*d, s] &] (* Amiram Eldar, Mar 09 2021 *)
  • PARI
    isok(m) = my(s=sigma(m), t=numdiv(m)); !(s % eulerphi(m)) && !(s % t) && !((m*t) % s); \\ Michel Marcus, Mar 09 2021

Extensions

a(6)-a(8) from Amiram Eldar, Mar 09 2021
Previous Showing 11-17 of 17 results.