A292937
a(0)=1, followed by highly safe primes: positions of records in A292936.
Original entry on oeis.org
1, 2, 5, 11, 23, 47, 2879, 71850239, 2444789759, 21981381119
Offset: 0
-
With[{s = Table[SelectFirst[Range[0, 10], ! PrimeQ@ Floor[n/(2^#)] &], {n, 10^7}]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Sep 29 2017 *)
A332549
Numbers k such that A332547(k) = 3.
Original entry on oeis.org
5, 6, 8, 11, 12, 23, 47, 96, 191, 192, 383, 768, 6143, 12288, 786431, 786432, 3221225472, 51539607551, 206158430208, 824633720831, 6597069766656, 26388279066623, 108086391056891903, 55340232221128654847, 221360928884514619392, 226673591177742970257407
Offset: 1
-
upto(n)={Set(concat([if(n<8,[],[8]), select(isprime, [3*2^k-1 |k<-[1..logint((n+1)\3, 2)]]), select(p->isprime(p+1), [3*2^k |k<-[1..logint(n\3, 2)]])]))} \\ Andrew Howroyd, Feb 21 2020
A195530
Primes of the form 3*2^n - 2*n - 1.
Original entry on oeis.org
2, 3, 7, 17, 179, 751, 6121, 12263, 49123, 393181, 50331599, 201326539, 13194139533227, 56668397794435742564203, 1856910058928070412348686157, 8769009823985417509222108996297698117935595257533, 4597486622597666575075041081450927550856217366550806167
Offset: 1
-
Select[Table[3 2^n-2n-1,{n,0,200}],PrimeQ] (* Harvey P. Dale, May 24 2012 *)
A267943
Numbers n such that 2^n - 3 and 3*2^n - 1 are both prime.
Original entry on oeis.org
a(3) = 6 because 2^6 - 3 = 61 and 3*2^6 - 1 = 191 are both prime.
Comments