cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A004605 Expansion of Pi in base 6.

Original entry on oeis.org

3, 0, 5, 0, 3, 3, 0, 0, 5, 1, 4, 1, 5, 1, 2, 4, 1, 0, 5, 2, 3, 4, 4, 1, 4, 0, 5, 3, 1, 2, 5, 3, 2, 1, 1, 0, 2, 3, 0, 1, 2, 1, 4, 4, 4, 2, 0, 0, 4, 1, 1, 5, 2, 5, 2, 5, 5, 3, 3, 1, 4, 2, 0, 3, 3, 3, 1, 3, 1, 1, 3, 5, 5, 3, 5, 1, 3, 1, 2, 3, 3, 4, 5, 5, 3, 3, 4, 1, 0, 0, 1, 5, 1, 5, 4, 3, 4, 4, 4, 0, 1, 2, 3, 4, 3
Offset: 1

Views

Author

Keywords

Examples

			3.05033005141512410523441405312532110230...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), this sequence (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Mathematica
    RealDigits[Pi, 6, 105][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 6], {n, 1, 105}] (* Joan Ludevid ,Aug 17 2022;easy to compute a(10000000)=0 with this function;requires Mathematica 12.0+ *)

A004604 Expansion of Pi in base 5.

Original entry on oeis.org

3, 0, 3, 2, 3, 2, 2, 1, 4, 3, 0, 3, 3, 4, 3, 2, 4, 1, 1, 2, 4, 1, 2, 2, 4, 0, 4, 1, 4, 0, 2, 3, 1, 4, 2, 1, 1, 1, 4, 3, 0, 2, 0, 3, 1, 0, 0, 2, 2, 0, 0, 3, 4, 4, 4, 1, 3, 2, 2, 1, 1, 0, 1, 0, 4, 0, 3, 3, 2, 1, 3, 4, 4, 0, 0, 4, 3, 2, 4, 4, 4, 0, 1, 4, 4, 1, 0, 4, 2, 3, 3, 4, 1, 3, 3, 0, 1, 1, 3, 2
Offset: 1

Views

Author

Keywords

Examples

			3.03232214303343241124122404140231421114...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), this sequence (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Mathematica
    RealDigits[Pi, 5, 100][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 5], {n, 1, 100}] (* Joan Ludevid, Aug 17 2022;easy to compute a(10000000)=0 with this function;requires Mathematica 12.0+ *)

A004606 Expansion of Pi in base 7.

Original entry on oeis.org

3, 0, 6, 6, 3, 6, 5, 1, 4, 3, 2, 0, 3, 6, 1, 3, 4, 1, 1, 0, 2, 6, 3, 4, 0, 2, 2, 4, 4, 6, 5, 2, 2, 2, 6, 6, 4, 3, 5, 2, 0, 6, 5, 0, 2, 4, 0, 1, 5, 5, 4, 4, 3, 2, 1, 5, 4, 2, 6, 4, 3, 1, 0, 2, 5, 1, 6, 1, 1, 5, 4, 5, 6, 5, 2, 2, 0, 0, 0, 2, 6, 2, 2, 4, 3, 6, 1, 0, 3, 3, 0, 1, 4, 4, 3, 2, 3, 3, 6, 3, 1, 0, 1, 1, 3
Offset: 1

Views

Author

Keywords

Examples

			3.06636514320361341102634022446522266435...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), this sequence (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Mathematica
    RealDigits[Pi, 7, 105][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 7], {n, 1, 105}] (* Joan Ludevid, Sep 13 2022; easy to compute a(10000000)=5 with this function;requires Mathematica 12.0+ *)

A006941 Expansion of Pi in base 8.

Original entry on oeis.org

3, 1, 1, 0, 3, 7, 5, 5, 2, 4, 2, 1, 0, 2, 6, 4, 3, 0, 2, 1, 5, 1, 4, 2, 3, 0, 6, 3, 0, 5, 0, 5, 6, 0, 0, 6, 7, 0, 1, 6, 3, 2, 1, 1, 2, 2, 0, 1, 1, 1, 6, 0, 2, 1, 0, 5, 1, 4, 7, 6, 3, 0, 7, 2, 0, 0, 2, 0, 2, 7, 3, 7, 2, 4, 6, 1, 6, 6, 1, 1, 6, 3, 3, 1, 0, 4, 5, 0, 5, 1, 2, 0, 2, 0, 7, 4, 6, 1, 6, 1, 5, 0, 0, 2, 3
Offset: 1

Views

Author

Keywords

Examples

			3.1103755242102643021514230630505600670...
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 614.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), this sequence (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Maple
    convert(evalf(Pi), octal, 120);  # Alois P. Heinz, Dec 16 2018
  • Mathematica
    RealDigits[ N[ Pi, 105], 8] [[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 8], {n, 1, 105}] (* Joan Ludevid, Sep 13 2022; easy to compute a(10000000)=1 with this function; requires Mathematica 12.0+ *)

Formula

a(n) = 4*A004601(3n) + 2*A004601(3n+1) + 1*A004601(3n+2). - Jason Kimberley, Nov 06 2012

Extensions

More terms from Michel ten Voorde, Apr 14 2001

A068438 Expansion of Pi in base 13.

Original entry on oeis.org

3, 1, 10, 12, 1, 0, 4, 9, 0, 5, 2, 10, 2, 12, 7, 7, 3, 6, 9, 12, 0, 11, 11, 8, 9, 12, 12, 9, 8, 8, 3, 2, 7, 8, 2, 9, 8, 3, 5, 8, 11, 3, 7, 0, 1, 6, 0, 3, 0, 6, 1, 3, 3, 12, 10, 5, 10, 12, 11, 10, 5, 7, 6, 1, 4, 11, 6, 5, 11, 4, 1, 0, 0, 2, 0, 12, 2, 2, 11, 4, 12, 7, 1, 4, 5, 7, 10, 9, 5, 5, 10, 5
Offset: 1

Views

Author

Benoit Cloitre, Mar 09 2002

Keywords

Examples

			3.1ac1049052a2c77369c0aa89cc988327829835...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), this sequence (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Mathematica
    RealDigits[Pi, 13, 111][[1]] (* slightly modified by Robert G. Wilson v, Dec 13 2017 *)
    Table[ResourceFunction["NthDigit"][Pi, n, 13], {n, 1, 111}] (* Joan Ludevid, Oct 11 2022; easy to compute a(10000000)=1 with this function; requires Mathematica 12.0+ *)

A075874 Pi = Sum_{n >= 1} a(n)/n!, with largest possible a(n).

Original entry on oeis.org

3, 0, 0, 3, 1, 5, 6, 5, 0, 1, 4, 7, 8, 0, 6, 7, 10, 7, 10, 4, 10, 6, 16, 1, 11, 20, 3, 18, 12, 9, 13, 18, 21, 14, 34, 27, 11, 27, 33, 36, 18, 5, 18, 5, 23, 39, 1, 10, 42, 28, 17, 20, 51, 8, 42, 47, 0, 27, 23, 16, 52, 32, 52, 53, 24, 43, 61, 64, 18, 17, 11, 0, 53, 14, 62
Offset: 1

Views

Author

N. J. A. Sloane, Robert G. Wilson v, Nov 02 2001 and Oct 20 2002

Keywords

Comments

What is meant is the expansion in the factorial number system, cf. links. The formula itself is not sufficient to define the terms uniquely: a(n) can be decreased by any amount x if x*(n+1) is added to a(n+1). - M. F. Hasler, Nov 26 2018

Examples

			Pi = 3/1! + 0/2! + 0/3! + 3/4! + 1/5! + ...
		

Crossrefs

Essentially same as A007514.
Pi in base n: A004601 to A004608, A000796, A068436 to A068440, A062964.

Programs

  • Magma
    SetDefaultRealField(RealField(250)); R:=RealField(); [Floor(Pi(R))] cat [Floor(Factorial(n)*Pi(R)) - n*Floor(Factorial((n-1))*Pi(R)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Maple
    Digits := 120; M := proc(a,n) local i,b,c; b := a; c := [ floor(b) ]; for i from 1 to n-1 do b := b-c[ i ]/i!; c := [ op(c), floor(b*(i+1)!) ]; od; c; end: t1 := M(Pi,100); A075874 := n->t1[n+1];
  • Mathematica
    p = N[Pi, 1000]; Do[k = Floor[p*n! ]; p = p - k/n!; Print[k], {n, 1, 75}]
    With[{b = Pi}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    x=Pi;vector(floor((y->y/log(y))(default(realprecision))),n,t=n!;k=floor(x*t);x-=k/t;k) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=Pi)\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); b = Pi; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A075874(n):
        if (n==1): return floor(pi)
        else: return expand(floor(factorial(n)*pi) - n*floor(factorial(n-1)*pi))
    [A075874(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Formula

a(1)=3; for n >= 2, a(n) = floor(n!*Pi) - n*floor((n-1)!*Pi). - Benoit Cloitre, Mar 10 2002

A068461 Factorial, or factoradic, expansion of log(11) = Sum_{n>=1} a(n)/n!, with a(n) as large as possible.

Original entry on oeis.org

2, 0, 2, 1, 2, 4, 3, 3, 1, 2, 4, 0, 3, 13, 1, 12, 12, 13, 1, 16, 16, 0, 16, 12, 10, 9, 1, 23, 3, 22, 0, 28, 11, 14, 23, 16, 0, 14, 6, 1, 1, 14, 4, 25, 43, 0, 29, 10, 41, 19, 47, 14, 0, 51, 10, 47, 37, 45, 46, 56, 57, 45, 10, 32, 61, 15, 9, 67, 5, 9, 22, 25, 65, 56, 24, 12, 71, 9, 57
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			log(11) = 2 + 0/2! + 2/3! + 1/4! + 2/5! + 4/6! + 3/7! + 3/8! + 1/9! + ...
		

Crossrefs

Cf. A016634 (decimal expansion), A016739 (continued fraction).
Cf. A007514 vs. A075874 for factoradic expansion.
Cf. A067882 (log(2)), A322334 (log(3)), A322333 (log(5)), A068460 (log(7)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Log(11)] cat [Floor(Factorial(n)*Log(11)) - n*Floor(Factorial((n-1))*Log(11)) : n in [2..80]]; // G. C. Greubel, Dec 05 2018
    
  • Mathematica
    With[{b = Log[11]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 05 2018 *)
  • PARI
    vector(30, n, if(n>1, t=t%1*n, t=log(11))\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); b = log(11); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Dec 05 2018
    
  • Sage
    def a(n):
        if n==1: return floor(log(11))
        else: return expand(floor(factorial(n)*log(11)) - n*floor(factorial(n-1)*log(11)))
    [a(n) for n in (1..80)] # G. C. Greubel, Dec 05 2018

Extensions

Name edited and keyword cons,easy removed by M. F. Hasler, Nov 26 2018

A068464 Factorial expansion of Gamma(1/4) = Sum_{n>=1} a(n)/n! with largest possible a(n), and Gamma = Euler's gamma function.

Original entry on oeis.org

3, 1, 0, 3, 0, 0, 3, 0, 5, 3, 2, 7, 0, 2, 8, 9, 16, 3, 1, 15, 18, 8, 20, 7, 23, 8, 10, 11, 28, 29, 24, 30, 3, 16, 10, 8, 31, 11, 30, 35, 5, 5, 38, 32, 31, 42, 13, 17, 43, 3, 41, 27, 1, 14, 26, 52, 38, 22, 55, 46, 6, 35, 46, 34, 24, 52, 52, 64, 62, 25, 46, 56, 3, 71, 70, 22, 53, 63, 53
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			Gamma(1/4) = A068466 = 3.6256099... = 3/1! + 1/2! + 0 + 3/4! + 0 + 0 + 3/7! + 0 + 5/9! + 3/10! + 2/11! + ... - _M. F. Hasler_, Nov 26 2018
		

Crossrefs

Cf. A007514, A068466 (decimal expansion), A068463.

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Gamma(1/4))] cat [Floor(Factorial(n)*Gamma(1/4)) - n*Floor(Factorial((n-1))*Gamma(1/4)) : n in [2..80]]; // G. C. Greubel, Nov 27 2018
    
  • Mathematica
    r:= Gamma[1/4]; Table[If[n == 1, Floor[r], Floor[n!*r]- n*Floor[(n-1)!*r] ], {n,1,100}] (* G. C. Greubel, Mar 29 2018 *)
  • PARI
    default(realprecision, 250); b = gamma(1/4); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Mar 29 2018
    
  • PARI
    A068464(N=90,c=gamma(precision(.25,logint(N!,10)+1)))=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ - M. F. Hasler, Nov 26 2018
    
  • Sage
    def A068464(n):
        if (n==1): return floor(gamma(1/4))
        else: return expand(floor(factorial(n)*gamma(1/4)) - n*floor(factorial(n-1)*gamma(1/4)))
    [A068464(n) for n in (1..80)] # G. C. Greubel, Nov 27 2018

Formula

a(n) = floor(n!*Gamma(1/4)) - n*floor((n-1)!*Gamma(1/4)), for n > 1. - M. F. Hasler, Nov 26 2018

A068451 Factorial expansion of the golden ratio (1+sqrt(5))/2 = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 0, 2, 4, 0, 6, 7, 1, 1, 8, 1, 6, 0, 11, 0, 10, 5, 6, 9, 15, 20, 10, 15, 1, 18, 5, 13, 9, 0, 13, 15, 2, 27, 28, 2, 32, 36, 11, 4, 34, 37, 0, 4, 32, 10, 4, 4, 32, 46, 39, 37, 2, 20, 27, 8, 54, 27, 45, 9, 26, 18, 59, 0, 22, 63, 41, 54, 65, 61, 45, 51, 61, 31, 68, 48, 34, 39, 71, 59
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A001622 (decimal expansion).
Cf. A075874 and A007514.

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor((1+Sqrt(5))/2)] cat [Floor(Factorial(n)*(1+Sqrt(5))/2) - n*Floor(Factorial((n-1))*(1+Sqrt(5))/2) : n in [2..80]]; // G. C. Greubel, Mar 21 2018
    
  • Mathematica
    With[{b = GoldenRatio}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    default(realprecision, 250); b = (1+sqrt(5))/2; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Mar 21 2018
    
  • PARI
    A068451(N=90,c=precision(sqrt(5)+1,logint(N!,10))/2)=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ M. F. Hasler, Nov 27 2018
    
  • Sage
    def A068451(n):
        if (n==1): return floor(golden_ratio)
        else: return expand(floor(factorial(n)*golden_ratio) - n*floor(factorial(n-1)*golden_ratio))
    [A068451(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

A068455 Factorial expansion of zeta(6) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 3, 3, 2, 4, 5, 6, 5, 9, 14, 11, 3, 4, 0, 15, 5, 7, 10, 17, 11, 14, 12, 22, 4, 17, 21, 15, 26, 21, 9, 3, 23, 0, 4, 31, 39, 21, 13, 26, 16, 25, 27, 13, 27, 21, 19, 46, 17, 21, 25, 50, 21, 44, 55, 23, 20, 22, 10, 49, 37, 5, 55, 51, 39, 40, 63, 2, 6, 17, 61, 52, 9, 21
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A007514.

Programs

  • Magma
    SetDefaultRealField(RealField(250)); L:=RiemannZeta(); [Floor(Evaluate(L,6))] cat [Floor(Factorial(n)*Evaluate(L,6)) - n*Floor(Factorial((n-1))*Evaluate(L,6)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    t = Zeta[6]; s = {}; Do[n = Floor[t*i!]; t -= n/i!; AppendTo[s, n], {i, 1, 30}]; s (* Amiram Eldar, Nov 25 2018 *)
    With[{b = Zeta[6]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=zeta(6))\1) \\ M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); for(n=1, 80, print1(if(n==1, floor(zeta(6)), floor(n!*zeta(6)) - n*floor((n-1)!*zeta(6))), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A068455(n):
        if (n==1): return floor(zeta(6))
        else: return expand(floor(factorial(n)*zeta(6)) - n*floor(factorial(n-1)*zeta(6)))
    [A068455(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Extensions

Name edited and keywords cons and easy removed by M. F. Hasler, Nov 25 2018
Previous Showing 11-20 of 31 results. Next