cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A068456 Factorial expansion of zeta(7) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 5, 7, 9, 5, 2, 12, 13, 10, 10, 4, 4, 4, 14, 4, 10, 14, 12, 9, 22, 9, 11, 9, 8, 14, 26, 25, 28, 22, 35, 0, 24, 0, 20, 18, 13, 21, 31, 30, 22, 24, 19, 34, 16, 42, 36, 46, 35, 46, 32, 16, 34, 53, 11, 44, 45, 49, 36, 49, 13, 53, 67, 53, 63, 11, 9, 9, 16, 37, 59, 8
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A007514.

Programs

  • Magma
    SetDefaultRealField(RealField(250)); L:=RiemannZeta(); [Floor(Evaluate(L,7))] cat [Floor(Factorial(n)*Evaluate(L,7)) - n*Floor(Factorial((n-1))*Evaluate(L,7)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    t = Zeta[7]; s = {}; Do[n = Floor[t*i!]; t -= n/i!; AppendTo[s, n], {i, 1, 30}]; s (* Amiram Eldar, Nov 25 2018 *)
    With[{b = Zeta[7]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=zeta(7))\1) \\ M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); for(n=1, 80, print1(if(n==1, floor(zeta(7)), floor(n!*zeta(7)) - n*floor((n-1)!*zeta(7))), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A068456(n):
        if (n==1): return floor(zeta(7))
        else: return expand(floor(factorial(n)*zeta(7)) - n*floor(factorial(n-1)*zeta(7)))
    [A068456(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Extensions

Name edited and keywords cons,easy removed by M. F. Hasler, Nov 25 2018

A068457 Factorial expansion of zeta(8) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 6, 4, 3, 5, 10, 0, 1, 11, 14, 4, 2, 1, 17, 12, 19, 18, 18, 6, 7, 24, 24, 7, 9, 14, 28, 27, 14, 4, 19, 33, 24, 4, 14, 29, 21, 38, 17, 20, 5, 22, 30, 7, 13, 44, 19, 4, 19, 19, 14, 7, 48, 9, 58, 49, 17, 26, 35, 33, 36, 9, 28, 36, 54, 36, 70, 0, 33, 29, 45, 14, 46, 69
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A007514, adjacent sequences.

Programs

  • Magma
    SetDefaultRealField(RealField(250)); L:=RiemannZeta(); [Floor(Evaluate(L,8))] cat [Floor(Factorial(n)*Evaluate(L,8)) - n*Floor(Factorial((n-1))*Evaluate(L,8)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    t = Zeta[8]; s = {}; Do[n = Floor[t*i!]; t -= n/i!; AppendTo[s, n], {i, 1, 30}]; s (* Amiram Eldar, Nov 25 2018 *)
    With[{b = Zeta[8]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=zeta(8))\1) \\ M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); for(n=1, 80, print1(if(n==1, floor(zeta(8)), floor(n!*zeta(8)) - n*floor((n-1)!*zeta(8))), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A068457(n):
        if (n==1): return floor(zeta(8))
        else: return expand(floor(factorial(n)*zeta(8)) - n*floor(factorial(n-1)*zeta(8)))
    [A068457(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Extensions

Name edited and keywords cons,easy removed by M. F. Hasler, Nov 25 2018

A068458 Factorial expansion of zeta(9) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 3, 0, 8, 8, 0, 7, 4, 12, 9, 8, 11, 11, 9, 16, 15, 11, 10, 11, 1, 16, 13, 25, 24, 0, 15, 23, 12, 32, 18, 21, 20, 15, 20, 19, 18, 1, 5, 18, 20, 13, 16, 35, 6, 46, 40, 28, 9, 3, 19, 34, 14, 6, 0, 26, 48, 45, 58, 10, 0, 36, 32, 21, 30, 42, 12, 65, 54, 26, 29, 15, 46, 65
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A007514, adjacent sequences.

Programs

  • Magma
    SetDefaultRealField(RealField(250)); L:=RiemannZeta(); [Floor(Evaluate(L,9))] cat [Floor(Factorial(n)*Evaluate(L,9)) - n*Floor(Factorial((n-1))*Evaluate(L,9)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    t = Zeta[9]; s = {}; Do[n = Floor[t*i!]; t -= n/i!; AppendTo[s, n], {i, 1, 30}]; s (* Amiram Eldar, Nov 25 2018 *)
    With[{b = Zeta[9]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=zeta(9))\1) \\ M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); for(n=1, 80, print1(if(n==1, floor(zeta(9)), floor(n!*zeta(9)) - n*floor((n-1)!*zeta(9))), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A068458(n):
        if (n==1): return floor(zeta(9))
        else: return expand(floor(factorial(n)*zeta(9)) - n*floor(factorial(n-1)*zeta(9)))
    [A068458(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

A068459 Factorial expansion of zeta(10): zeta(10) = Sum_{n>0} a(n)/n!.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 5, 0, 0, 9, 1, 3, 1, 0, 1, 11, 2, 15, 10, 18, 4, 16, 9, 20, 12, 6, 1, 23, 20, 14, 22, 0, 8, 9, 3, 26, 15, 6, 13, 11, 20, 32, 7, 12, 31, 39, 46, 36, 6, 49, 7, 10, 2, 5, 44, 11, 32, 41, 49, 21, 40, 17, 49, 62, 44, 13, 25, 67, 41, 57, 27, 13, 24, 35, 25, 43, 25, 27, 29
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A007514.

Programs

  • Magma
    SetDefaultRealField(RealField(250)); L:=RiemannZeta(); [Floor(Evaluate(L,10))] cat [Floor(Factorial(n)*Evaluate(L,10)) - n*Floor(Factorial((n-1))*Evaluate(L,10)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    t = Zeta[10]; s = {}; Do[n = Floor[t*i!]; t -= n/i!; AppendTo[s, n], {i, 1, 30}]; s (* Amiram Eldar, Nov 25 2018 *)
    With[{b = Zeta[10]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=zeta(10))\1) \\ Increase realprecision (do e.g. \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 500); for(n=1, 80, print1(if(n==1, floor(zeta(10)), floor(n!*zeta(10)) - n*floor((n-1)!*zeta(10))), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A068459(n):
        if (n==1): return floor(zeta(10))
        else: return expand(floor(factorial(n)*zeta(10)) - n*floor(factorial(n-1)*zeta(10)))
    [A068459(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Extensions

Keywords cons,easy removed by M. F. Hasler, Nov 25 2018

A068454 Factorial expansion of zeta(5) = Sum_{n>=1} a(n)/n!, with a(n) as large as possible.

Original entry on oeis.org

1, 0, 0, 0, 4, 2, 4, 0, 8, 3, 4, 9, 10, 5, 3, 12, 4, 1, 10, 0, 6, 19, 0, 19, 10, 21, 19, 16, 3, 27, 24, 12, 12, 14, 7, 33, 27, 15, 28, 15, 7, 15, 7, 21, 13, 29, 16, 44, 39, 27, 39, 17, 6, 18, 2, 21, 21, 35, 29, 12, 13, 6, 39, 14, 1, 23, 55, 34, 10, 42, 70, 14, 42, 26, 74, 64, 12, 42, 14
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A075874 (same for Pi), A007514 (different variant).
Cf. A067279 (zeta(2)), A067277 (zeta(3)), A068447 (zeta(4)), A068455 (zeta(6)), A068456 (zeta(7)), A068457 (zeta(8)), A068458 (zeta(9)), A068459 (zeta(10)).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); b:=Evaluate(RiemannZeta(),5); [n eq 1 select Floor(b) else Floor(Factorial(n)*b) - n*Floor(Factorial(n)*b/n) : n in [1..100]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    t = Zeta[5]; s = {}; Do[n = Floor[t*i!]; t -= n/i!; AppendTo[s, n], {i, 1, 30}]; s (* Amiram Eldar, Nov 25 2018 *)
    With[{b = Zeta[5]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    vector(N=100, n, if(n>1, c=c%1*n, c=zeta(precision(5.,N*log(N/2.7)\2.3+3)))\1) \\ Specific a(n) can be computed via the FORMULA. For repeated use the value of c can be stored as a global variable, to be re-computed with higher precision when log_10(n!) exceeds its precision. - M. F. Hasler, Nov 25 2018
    
  • Sage
    b=zeta(5)
    @cached_function
    def A068454(n):
        if n == 1: return floor(b)
        else: return expand(floor(factorial(n)*b) - n*floor(factorial(n-1)*b))
    [A068454(n) for n in (1..100)] # G. C. Greubel, Nov 26 2018

Formula

a(n) = floor(c*n!) - n*floor(c*(n-1)!) = floor(frac(c*(n-1)!)*n) for n > 1, with c = zeta(5). - M. F. Hasler, Dec 20 2018

Extensions

Name edited and keyword cons removed by M. F. Hasler, Nov 25 2018

A067840 Factorial expansion of e^2 : exp(2) = Sum_{n >= 0} a(n)/n!.

Original entry on oeis.org

7, 0, 0, 2, 1, 1, 4, 0, 6, 6, 6, 8, 5, 11, 5, 10, 10, 15, 16, 8, 19, 18, 15, 0, 16, 1, 2, 26, 17, 27, 23, 17, 18, 11, 24, 34, 25, 16, 27, 5, 33, 20, 11, 39, 35, 25, 39, 7, 5, 21, 27, 30, 33, 21, 34, 9, 10, 26, 32, 15, 35, 23, 6, 3, 21, 43, 50, 40, 41, 33, 1, 62, 58, 59, 12, 23, 62, 42
Offset: 0

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Formula

a(0) = 7; for n>=1, a(n) = floor(n!*e^2) - n*floor((n-1)!*e^2).

Extensions

Offset changed to 0 by Sean A. Irvine, Jan 09 2024

A068452 Pi^2 = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

9, 1, 2, 0, 4, 2, 0, 6, 4, 0, 4, 11, 6, 4, 14, 8, 12, 6, 18, 12, 12, 14, 13, 2, 7, 20, 12, 2, 16, 21, 25, 26, 29, 19, 7, 3, 20, 3, 38, 7, 12, 19, 37, 1, 23, 32, 19, 32, 38, 45, 45, 27, 44, 34, 14, 49, 35, 29, 30, 57, 57, 18, 56, 48, 33, 19, 44, 35, 12, 56, 28, 38, 64, 35, 10, 45, 35, 0
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

For the fractional part, this corresponds to the factoradic (or factorial base, or harmonic) expansion, but the integer part 9 = 3! + 2! + 1! would be [1, 1, 1] in factorial base, cf. A007623(9) = 111. - M. F. Hasler, Nov 27 2018

Crossrefs

Cf. A002388 (decimal expansion of Pi^2).
Similar expansions: A068450 (sqrt(Pi)), A075874 (Pi), A007514 (different variant for Pi).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); R:=RealField(); [Floor(Pi(R)^2)] cat [Floor(Factorial(n)*Pi(R)^2) - n*Floor(Factorial((n-1))*Pi(R)^2) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Maple
    fexp := proc(x) local xres,a,n ; xres := x ; a := [] ; for n from 1 to 100 do a := [op(a),floor(n!*xres)] ; xres := xres-op(-1,a)/n! ; od: a ; end: Digits := 400 ; fexp(evalf(Pi^2)) ; Digits := 600 ; fexp(evalf(Pi^2)) ; # R. J. Mathar, Sep 30 2008
  • Mathematica
    p=N[Pi, 10000]^2; Do[k=Floor[p n!]; p=p - k / n!; Print[k], {n, 1000}] (* Vincenzo Librandi, Nov 24 2018 *)
    With[{b = Pi^2}, Table[If[n == 1, Floor[b], Floor[n!*b] -n*Floor[(n- 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    default(realprecision, 250); b = Pi^2; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • PARI
    A068452(N=90, c=precision(Pi^2,logint(N!,10)))=vector(N, n, if(n>1, c=c%1*n, c)\1) \\ M. F. Hasler, Nov 27 2018
    
  • Sage
    def A068452(n):
        if (n==1): return floor(pi^2)
        else: return expand(floor(factorial(n)*pi^2) - n*floor(factorial(n-1)*pi^2))
    [A068452(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Extensions

Corrected beginning at 3rd term by R. J. Mathar, Sep 30 2008

A068448 Factorial expansion of log(Pi) = Sum_{n>0} a(n)/n! with a(n) as large as possible.

Original entry on oeis.org

1, 0, 0, 3, 2, 2, 1, 3, 4, 5, 8, 10, 11, 7, 13, 13, 3, 14, 11, 16, 6, 9, 3, 14, 0, 16, 22, 9, 8, 26, 5, 18, 6, 3, 13, 31, 4, 27, 25, 5, 12, 1, 17, 31, 2, 4, 16, 17, 39, 15, 15, 25, 52, 40, 50, 3, 27, 32, 54, 18, 55, 10, 29, 62, 38, 4, 17, 53, 13, 24, 22, 40, 23, 11, 74, 18, 74, 31, 8
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

If a(n) is not required to be as large as possible, it isn't well defined: it can be decreased by any amount x without changing the value of the sum, if x*(n+1) is added to a(n+1), which in turn can be decreased by any arbitrary amount etc. - M. F. Hasler, Dec 04 2018

Crossrefs

Cf. A053510 (decimal expansion).
Similar expansions: A068450 (sqrt(Pi)), A075874 (Pi), A007514 (a different variant for Pi).

Programs

  • Magma
    R:= RealField(); [Floor(Log(Pi(R)))] cat [Floor(Factorial(n)*Log(Pi(R))) - n*Floor(Factorial((n-1))*Log(Pi(R))) : n in [2..30]]; // G. C. Greubel, Mar 21 2018
  • Mathematica
    Table[If[n == 1, Floor[Log[Pi]], Floor[n!*Log[Pi]] - n*Floor[(n - 1)!*Log[Pi]]], {n,1,50}] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    for(n=1,30, print1(if(n==1, floor(log(Pi)), floor(n!*log(Pi)) - n*floor((n-1)!*log(Pi))), ", ")) \\ G. C. Greubel, Mar 21 2018
    
  • PARI
    A068448_vec(N=90,c=log(precision(Pi,N*log(N/2.4)\/2.3)))=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ N*log(N/2.4)\/2.3 ~ logint(N!,10) but uses much less memory when N is big. - M. F. Hasler, Nov 28 2018
    

Extensions

Name edited by M. F. Hasler, Dec 04 2018

A068449 Factorial expansion of log(Pi/2) = sum n>0 a(n)/n!.

Original entry on oeis.org

0, 0, 2, 2, 4, 1, 0, 7, 7, 3, 3, 6, 4, 10, 9, 1, 15, 2, 8, 10, 14, 6, 4, 7, 3, 3, 2, 2, 7, 26, 3, 30, 3, 31, 9, 29, 23, 12, 29, 3, 0, 12, 1, 11, 4, 13, 22, 17, 24, 33, 40, 34, 48, 27, 15, 5, 33, 33, 51, 48, 42, 46, 47, 38, 35, 30, 27, 1, 51, 52, 28, 25, 13, 30, 51, 14, 39, 12, 9, 58, 33
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A007514, A094642 (decimal expansion).

Programs

  • Magma
    R:= RealField(); [Floor(Log(Pi(R)/2))] cat [Floor(Factorial(n)*Log(Pi(R)/2)) - n*Floor(Factorial((n-1))* Log(Pi(R)/2)) : n in [2..30]]; // G. C. Greubel, Mar 21 2018
  • Mathematica
    Table[If[n == 1, Floor[Log[Pi/2]], Floor[n!*Log[Pi/2]] - n*Floor[(n - 1)!*Log[Pi/2]]], {n, 1, 50}] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    for(n=1,30, print1(if(n==1, floor(log(Pi/2)), floor(n!*log(Pi/2)) - n*floor((n-1)!*log(Pi/2))), ", ")) \\ G. C. Greubel, Mar 21 2018
    

A068462 Factorial expansion of the cube root of 2: 2^(1/3) = Sum_{n>0} a(n)/n!.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 1, 0, 0, 1, 5, 6, 10, 0, 11, 2, 13, 9, 9, 5, 15, 3, 1, 4, 18, 16, 3, 0, 27, 6, 8, 30, 7, 25, 31, 18, 9, 18, 9, 18, 38, 2, 2, 40, 26, 30, 41, 19, 9, 45, 39, 22, 28, 44, 20, 27, 33, 7, 3, 53, 6, 5, 4, 45, 44, 32, 4, 48, 53, 50, 15, 71, 53, 53, 1, 24, 23, 48, 56, 54, 1, 16
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A007514.

Programs

  • PARI
    vector(30, n, if(n>1, t=t%1*n, t=2^(1/3))\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 26 2018
Previous Showing 21-30 of 31 results. Next