cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A337145 a(n) is the determinant of the 2 X 2 matrix whose entries (when read by rows) are the n-th primes congruent to 1, 3, 5, 7 mod 8 respectively.

Original entry on oeis.org

104, 800, 1712, 2592, 3760, 4840, 5728, 12848, 15664, 18424, 20888, 23520, 28232, 28560, 25320, 30280, 37248, 50520, 43680, 33664, 61560, 73920, 70544, 57696, 38696, 27408, 79280, 63392, 107328, 109536, 162608, 172296, 187352, 197040, 248064, 228320, 215912, 229152, 255480, 231304, 286408, 256320
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 27 2021

Keywords

Comments

The first negative term is a(20750) = -58207896.
All terms are divisible by 8.

Examples

			The first primes == 1, 3, 5, 7 (mod 8) are 17, 3, 5, 7 respectively, so a(1) = 17*7 - 3*5 = 104.
The second primes == 1, 3, 5, 7 (mod 8) are 41, 11, 13, 23 respectively, so a(2) = 41*23 - 11*13 = 800.
The third primes == 1, 3, 5, 7 (mod 8) are 73, 19, 29, 31 respectively, so a(3) = 73*31 - 19*29 = 1712.
		

Crossrefs

Programs

  • Maple
    R:= NULL:
    L:= [-7, -5, -3, -1]:
    found:= false:
    for k from 1 to 100 do
      for i from 1 to 4 do
       for x from L[i]+8 by 8 do until isprime(x);
       L[i]:= x;
      od;
      v:= L[1]*L[4]-L[2]*L[3];
      R:= R,v;
    od:
    R;

A339882 Fundamental positive solution y(n) of the Diophantine equation x^2 - A045339(n)*y^2 = -2, for n >= 1.

Original entry on oeis.org

1, 1, 1, 3, 9, 3, 27, 1, 3, 9, 747, 627, 153, 36321, 1, 121, 699, 537, 2900979, 43, 5843427, 803, 1, 59, 13809, 3, 12507, 541137, 11, 563210019, 57, 28906107, 55617, 3, 499, 212279001, 11516632737, 6633, 41281449, 33, 48957047673, 6284900361, 369485787, 3777
Offset: 1

Views

Author

Wolfdieter Lang, Dec 22 2020

Keywords

Comments

The corresponding x = x(n) values are given in A339881.
The conjecture is that all A045339 entries have solutions.
For details and examples [x(n), y(n)] see also A339881.

Crossrefs

Formula

Generalized Pell equation. Fundamental solution a(n), with A339881(n)^2 - A045339(n)*a(n)^2 = -2, for n >= 1.

A106875 Primes of the form 3x^2+2xy+3y^2, with x and y nonnegative.

Original entry on oeis.org

3, 19, 59, 107, 163, 211, 251, 347, 419, 499, 571, 587, 619, 659, 883, 907, 947, 1051, 1171, 1259, 1283, 1459, 1483, 1499, 1579, 1627, 1747, 1907, 1931, 1987, 2003, 2083, 2179, 2203, 2347, 2411, 2459, 2467, 2531, 2539, 2707, 2803, 2819, 2963
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-32.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[3, 2, 3, 10000] (* see A106856 *)

A106876 Primes of the form 3x^2-2xy+3y^2, with x and y nonnegative.

Original entry on oeis.org

3, 11, 43, 67, 83, 131, 139, 179, 227, 283, 307, 331, 379, 443, 467, 491, 523, 547, 563, 643, 683, 691, 739, 787, 811, 827, 859, 971, 1019, 1091, 1123, 1163, 1187, 1291, 1307, 1427, 1451, 1523, 1531, 1571, 1619, 1667, 1699, 1723, 1787, 1811
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-32.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[3, -2, 3, 10000] (* see A106856 *)

A269420 Record (maximal) gaps between primes of the form 8k + 3.

Original entry on oeis.org

8, 24, 32, 40, 48, 72, 120, 144, 152, 176, 216, 264, 320, 400, 520, 592, 600, 824, 856, 872, 936, 992, 1064, 1072, 1112, 1336, 1392, 1408, 1584, 1720, 2080
Offset: 1

Views

Author

Alexei Kourbatov, Feb 25 2016

Keywords

Comments

Dirichlet's theorem on arithmetic progressions suggests that average gaps between primes of the form 8k + 3 below x are about phi(8)*log(x). This sequence shows that the record gap ending at p grows almost as fast as phi(8)*log^2(p). Here phi(n) is A000010, Euler's totient function; phi(8)=4.
Conjecture: a(n) < phi(8)*log^2(A269422(n)) almost always.
A269421 lists the primes preceding the maximal gaps.
A269422 lists the corresponding primes at the end of the maximal gaps.

Examples

			The first two primes of the form 8k + 3 are 3 and 11, so a(1)=11-3=8. The next prime of this form is 19; the gap 19-11 is not a record so nothing is added to the sequence. The next prime of this form is 43 and the gap 43-19=24 is a new record, so a(2)=24.
		

Crossrefs

Programs

  • PARI
    re=0; s=3; forprime(p=11, 1e8, if(p%8!=3, next); g=p-s; if(g>re, re=g; print1(g", ")); s=p)

A269421 Primes 8k + 3 preceding the maximal gaps in A269420.

Original entry on oeis.org

3, 19, 179, 379, 691, 1187, 1307, 4787, 15467, 22307, 43067, 83579, 273323, 373459, 1543291, 5364091, 5768803, 20941259, 137649667, 251522291, 369352163, 426008699, 938378747, 1042908091, 1378014731, 1878780427, 11474650339, 12402606331, 15931938899, 51025309339, 144309631099
Offset: 1

Views

Author

Alexei Kourbatov, Feb 25 2016

Keywords

Comments

Subsequence of A007520.
A269420 lists the corresponding record gap sizes. See more comments there.

Examples

			The first two primes of the form 8k + 3 are 3 and 11, so a(1)=3. The next prime of this form is 19; the gap 19-11 is not a record so nothing is added to the sequence. The next prime of this form is 43 and the gap 43-19=24 is a new record, so a(2)=19.
		

Crossrefs

Programs

  • PARI
    re=0; s=3; forprime(p=11, 1e8, if(p%8!=3, next); g=p-s; if(g>re, re=g; print1(s", ")); s=p)

A269422 Primes 8k + 3 at the end of the maximal gaps in A269420.

Original entry on oeis.org

11, 43, 211, 419, 739, 1259, 1427, 4931, 15619, 22483, 43283, 83843, 273643, 373859, 1543811, 5364683, 5769403, 20942083, 137650523, 251523163, 369353099, 426009691, 938379811, 1042909163, 1378015843, 1878781763, 11474651731, 12402607739, 15931940483, 51025311059, 144309633179
Offset: 1

Views

Author

Alexei Kourbatov, Feb 25 2016

Keywords

Comments

Subsequence of A007520.
A269420 lists the corresponding record gap sizes. See more comments there.

Examples

			The first two primes of the form 8k + 3 are 3 and 11, so a(1)=11. The next prime of this form is 19; the gap 19-11 is not a record so nothing is added to the sequence. The next prime of this form is 43 and the gap 43-19=24 is a new record, so a(2)=43.
		

Crossrefs

Programs

  • PARI
    re=0; s=3; forprime(p=11, 1e8, if(p%8!=3, next); g=p-s; if(g>re, re=g; print1(p", ")); s=p)

A282722 Let p = n-th prime == 3 mod 8; a(n) = sum of quadratic residues mod p that are > p/2.

Original entry on oeis.org

0, 9, 44, 293, 461, 758, 1022, 1799, 2530, 3171, 4778, 5068, 7662, 8470, 9993, 14097, 16674, 19467, 20755, 25701, 29042, 34471, 37506, 40661, 45066, 48541, 54324, 54224, 58135, 60351, 68593, 75432, 74014, 83881, 85900, 98518, 112000, 117443, 122241, 132125, 143322, 151299, 163180, 161975, 181191
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[];
    for i1 from 1 to 300 do
    p:=ithprime(i1);
    if (p mod 8) = 3 then
    ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0;
    for j from 1 to p-1 do
    if legendre(j,p)=1 then
    q:=q+j;
    if j
  • Mathematica
    b[1] = 3; b[n_] := b[n] = Module[{p}, p = NextPrime[b[n - 1]]; While[Mod[p, 8] != 3, p = NextPrime[p]]; p];
    a[n_] := Module[{p, q, r}, p = b[n]; q = 0; For[r = (p + 1)/2, r <= p, r++, If[KroneckerSymbol[r, p] == 1, q = q + r]]; q];
    Array[a, 45] (* Jean-François Alcover, Nov 27 2017, after R. J. Mathar *)

A282724 Let p = n-th prime == 3 mod 8; a(n) = sum of quadratic nonresidues mod p that are < p/2.

Original entry on oeis.org

0, 2, 13, 94, 129, 247, 306, 555, 745, 999, 1579, 1555, 2466, 2653, 3059, 4581, 5430, 6351, 6658, 8409, 9087, 11158, 11996, 12858, 14814, 15788, 17880, 17277, 18950, 19481, 22400, 24876, 23518, 27448, 28115, 32285, 36743, 38269, 39851, 43111, 47406, 50055, 53683, 51645, 58274, 66410, 65119, 76013, 80465
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[];
    for i1 from 1 to 300 do
    p:=ithprime(i1);
    if (p mod 8) = 3 then
    ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0;
    for j from 1 to p-1 do
    if legendre(j,p)=1 then
    q:=q+j;
    if j
  • Mathematica
    b[1] = 3; b[n_] := b[n] = Module[{p}, p = NextPrime[b[n - 1]]; While[Mod[p, 8] != 3, p = NextPrime[p]]; p];
    a[n_] := Module[{p, q, r}, p = b[n]; q = 0; For[r = 1, r <= (p - 1)/2, r++, If[KroneckerSymbol[r, p] != 1, q = q + r]]; q];
    Array[a, 50] (* Jean-François Alcover, Nov 27 2017, after R. J. Mathar *)

A339881 Fundamental nonnegative solution x(n) of the Diophantine equation x^2 - A045339(n)*y^2 = -2, for n >= 1.

Original entry on oeis.org

0, 1, 3, 13, 59, 23, 221, 9, 31, 103, 8807, 8005, 2047, 527593, 15, 1917, 11759, 9409, 52778687, 801, 113759383, 16437, 21, 1275, 305987, 67, 286025, 12656129, 261, 13458244873, 1381, 719175577, 1410305, 77, 13041, 5580152383, 313074529583, 186079, 1175615653, 949, 1434867510253, 186757799729, 11127596791, 116231
Offset: 1

Views

Author

Wolfdieter Lang, Dec 22 2020

Keywords

Comments

The corresponding y values are given in A339882.
The Diophantine equation x^2 - p*y^2 = -2, of discriminant Disc = 4*p > 0 (indefinite binary quadratic form), with prime p can have proper solutions (gcd(x, y) = 1) only for primes p = 2 and p == 3 (mod 8) by parity arguments.
There are no improper solutions (with g >= 2, g^2 does not divide 2).
The prime p = 2 has just one infinite family of proper solutions with nonnegative x values. The fundamental proper solutions for p = 2 is (0, 1).
If a prime p congruent to 3 modulo 8, (p(n) = A007520(n)) has a solution then it can have only one infinite family of (proper) solutions with positive x value.
This family is self-conjugate (also called ambiguous, having with each solution (x, y) also (x, -y) as solution). This follows from the fact that there is only one representative parallel primitive form (rpapf), namely F_{pa(n)} = [-2, 2, -(p(n) - 1)/2].
The reduced principal form of Disc(n) = 4*p(n) is F_{p(n)} = [1, 2*s(n), -(p(n) - s(n)^2)], with s(n) = A000194(n'(n)), if p(n) = A000037(n'(n)). The corresponding (reduced) principal cycle has length L(n) = 2*A307372(n'(n)).
The number of all cycles, the class number, for Disc(n) is h(n'(n)) = A324252(n'(n)), Note that in the Buell reference, Table 2B in Appendix 2, p. 241, all Disc(n) <= 4*1051 = 4204 have class number 2, except for p = 443, 499, 659 (Disc = 1772, 1996, 26).
See the W. Lang link Table 1 for some principal reduced forms F_{p(n)} (there for p(n) in the D-column, and F_p is called FR(n)) with their t-tuples, giving the automporphic matrix Auto(n) = R(t_1) R(t_1) ... R(t_{L(n)}), where R(t) := Matrix([[0, -1], [1, t]]), and the length of the principal cycle L(n) given above, and in Table 2 for CR(n).
To prove the existence of a solution one would have to show that the rpapf F{pa(n)} is properly equivalent to the principal form F_{pa(n)}.

Examples

			The fundamental solutions [A045339(n), [x = a(n), y = A339882(n)]] begin:
[2, [0, 1]], [3, [1, 1]], [11, [3, 1]], [19, [13, 3]], [43, [59, 9]], [59, [23, 3]], [67, [221, 27]], [83, [9, 1]], [107, [31, 3]], [131, [103, 9]], [139, [8807, 747]], [163, [8005, 627]], [179, [2047, 153]], [211, [527593, 36321]], [227, [15, 1]], [251, [1917, 121]], [283, [11759, 699]], [307, [9409, 537]], [331, [52778687, 2900979]], [347, [801, 43]], [379, [113759383, 5843427]], [419, [16437, 803]], [443, [21, 1]], [467, [1275, 59]], [491, [305987, 13809]], [499, [67, 3]], [523, [286025, 12507]], [547, [12656129, 541137]], [563, [261, 11]], [571, [13458244873, 563210019]], [587, [1381, 57]], [619, [719175577, 28906107]], [643, [1410305, 55617]], [659, [77, 3]], [683, [13041, 499]], [691, [5580152383, 212279001]], [739, [313074529583, 11516632737]], [787, [186079, 6633]], [811, [1175615653, 41281449]], [827, [949, 33]], [859, [1434867510253, 48957047673]], [883, [186757799729, 6284900361]], [907, [11127596791, 369485787]], [947, [116231, 3777]], ...
		

References

  • D. A. Buell, Binary Quadratic Forms, Springer, 1989.

Crossrefs

Cf. A000194, A000037, A000194, A007520, A045339, A307372, A324252, A339882 (y values), A336793 (record y values), A336792 (corresponding odd p numbers).

Formula

Generalized Pell equation: Positive fundamental a(n), with a(n)^2 - A045339(n)*A339882(n)^2 = -2, for n >= 1.
Previous Showing 31-40 of 51 results. Next