cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A346020 G.f. A(x) satisfies: A(x) = x + x^3 * exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 4, 7, 11, 17, 28, 46, 74, 124, 206, 343, 577, 976, 1649, 2808, 4792, 8200, 14073, 24228, 41782, 72246, 125164, 217262, 377784, 658072, 1148006, 2005743, 3509125, 6147422, 10782375, 18934209, 33285291, 58575080, 103181405, 181928014, 321059155
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 0, 1][n], add(a(n-k)*
           add(d*a(d), d=numtheory[divisors](k)), k=1..n-3)/(n-3))
        end:
    seq(a(n), n=1..42);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    nmax = 42; A[] = 0; Do[A[x] = x + x^3 Exp[Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[2] = 0; a[3] = 1; a[n_] := a[n] = (1/(n - 3)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 3}]; Table[a[n], {n, 1, 42}]

Formula

G.f.: x + x^3 / Product_{n>=1} (1 - x^n)^a(n).
a(1) = 1, a(2) = 0, a(3) = 1; a(n) = (1/(n - 3)) * Sum_{k=1..n-3} ( Sum_{d|k} d * a(d) ) * a(n-k).
a(n) ~ c * d^n / n^(3/2), where d = 1.82975393308934955558864748939303527364978309460948926333116466766295641... and c = 0.8335864368398390652263577663136791087027831725508605623969711758177... - Vaclav Kotesovec, Jul 06 2021

A358460 Number of locally disjoint ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 103, 301, 902, 2767, 8637, 27324, 87409, 282319, 919352
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2022

Keywords

Comments

Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex.

Examples

			The a(1) = 1 through a(5) = 13 trees:
  o  (o)  (oo)   (ooo)    (oooo)
          ((o))  ((o)o)   ((o)oo)
                 ((oo))   ((oo)o)
                 (o(o))   ((ooo))
                 (((o)))  (o(o)o)
                          (o(oo))
                          (oo(o))
                          (((o))o)
                          (((o)o))
                          (((oo)))
                          ((o(o)))
                          (o((o)))
                          ((((o))))
		

Crossrefs

The locally non-intersecting version is A143363, unordered A007562.
The unordered version is A316473, ranked by A316495.
A000108 counts ordered rooted trees, unordered A000081.
A358453 counts transitive ordered trees, unordered A290689.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join @@ Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],FreeQ[#,{_,{_,x_,_},_,{_,x_,_},_}]&]],{n,10}]

A363465 G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} A(x^k)^3 / (k*x^(2*k)) ).

Original entry on oeis.org

1, 1, 1, 4, 10, 35, 113, 405, 1447, 5369, 20143, 76908, 296800, 1157784, 4554142, 18050308, 72003513, 288880549, 1164867528, 4718481975, 19190711729, 78338352168, 320851617424, 1318115448886, 5430133003281, 22427330328214, 92847100210382, 385217596191075, 1601483701650310
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 29; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[A[x^k]^3/(k x^(2 k)), {k, 1, nmax}]] + O[x]^(nmax + 1)//Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; f[n_] := f[n] = Sum[a[k] a[n - k], {k, 1, n - 1}]; g[n_] := g[n] = Sum[a[k] f[n - k], {k, 1, n - 1}]; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d g[d + 2], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 29}]

A363466 G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} A(x^k)^4 / (k*x^(3*k)) ).

Original entry on oeis.org

1, 1, 1, 5, 15, 61, 240, 1019, 4387, 19462, 87649, 401077, 1856698, 8685295, 40978465, 194806667, 932141498, 4486014160, 21699575863, 105443142514, 514469464550, 2519437043753, 12379461876092, 61013509071216, 301553269618318, 1494229881209940, 7421627743464582, 36942997716584746
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[A[x^k]^4/(k x^(3 k)), {k, 1, nmax}]] + O[x]^(nmax + 1)//Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; f[n_] := f[n] = Sum[a[k] a[n - k], {k, 1, n - 1}]; g[n_] := g[n] = Sum[f[k] f[n - k], {k, 1, n - 1}]; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d g[d + 3], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 28}]

A319286 Number of series-reduced locally disjoint rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 2, 9, 67, 573, 6933, 97147, 1666999
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other branch of the same root.

Examples

			The a(3) = 9 trees:
  (1(11))
   (111)
  (1(12))
  (2(11))
   (112)
  (1(23))
  (2(13))
  (3(12))
   (123)
Examples of rooted trees that are not locally disjoint are ((11)(12)) and ((12)(13)).
		

Crossrefs

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],disjointQ]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]

A345232 G.f. A(x) satisfies: A(x) = x + x^2 / exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...).

Original entry on oeis.org

1, 1, -1, -1, 2, 0, -4, 3, 7, -12, -8, 35, -6, -87, 84, 172, -367, -187, 1175, -417, -3003, 3621, 5723, -15126, -4374, 47813, -26192, -119731, 175835, 211797, -699210, -57982, 2148031, -1601079, -5161935, 9125489, 8093890, -34478125, 3997517, 101971205, -97182026
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 1, -add(add(a(n-k)*
          d*a(d), d=numtheory[divisors](k)), k=1..n-2)/(n-2))
        end:
    seq(a(n), n=1..42);  # Alois P. Heinz, Jun 11 2021
  • Mathematica
    nmax = 41; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[-A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = -(1/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 41}]

Formula

G.f.: x + x^2 * Product_{n>=1} (1 - x^n)^a(n).
a(n+2) = -(1/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+2).

A346030 G.f. A(x) satisfies: A(x) = x^2 + x^3 * exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 2, 3, 3, 6, 8, 11, 18, 26, 37, 60, 87, 132, 206, 310, 475, 742, 1130, 1759, 2737, 4236, 6618, 10348, 16139, 25350, 39767, 62456, 98401, 155047, 244570, 386639, 611298, 967874, 1534297, 2433584, 3864154, 6141560, 9766908, 15547187, 24766037, 39476846
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, signum(n-1), add(a(n-k)*
           add(d*a(d), d=numtheory[divisors](k)), k=1..n-3)/(n-3))
        end:
    seq(a(n), n=1..47);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    nmax = 47; A[] = 0; Do[A[x] = x^2 + x^3 Exp[Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 0; a[2] = 1; a[3] = 1; a[n_] := a[n] = (1/(n - 3)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 3}]; Table[a[n], {n, 1, 47}]

Formula

G.f.: x^2 + x^3 / Product_{n>=1} (1 - x^n)^a(n).
a(1) = 0, a(2) = 1, a(3) = 1; a(n) = (1/(n - 3)) * Sum_{k=1..n-3} ( Sum_{d|k} d * a(d) ) * a(n-k).
a(n) ~ c * d^n / n^(3/2), where d = 1.646504994482771446591056040381099740295861136174688956979834656... and c = 0.8402317368556115946120005582458627329843217960728964299829... - Vaclav Kotesovec, Jul 06 2021

A363062 G.f. A(x) satisfies: A(x) = x - x^2 * exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...).

Original entry on oeis.org

1, -1, -1, 0, 1, 1, -1, -2, 0, 4, 4, -5, -13, -2, 26, 30, -29, -94, -26, 189, 246, -198, -769, -302, 1512, 2228, -1372, -6691, -3425, 12672, 21046, -9503, -60776, -38353, 109719, 205330, -61001, -567518, -427145, 967914, 2045196, -314417, -5405209, -4743873, 8625547
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; A[] = 0; Do[A[x] = x - x^2 Exp[Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[2] = -1; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 45}]

Formula

G.f.: x - x^2 / Product_{n>=1} (1 - x^n)^a(n).
a(1) = 1, a(2) = -1; a(n) = (1/(n - 2)) * Sum_{k=1..n-2} ( Sum_{d|k} d * a(d) ) * a(n-k).

A363385 G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} A(x^k)^2 / k ).

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 4, 11, 14, 29, 66, 115, 222, 493, 944, 1884, 4020, 8175, 16618, 35198, 73220, 151844, 321036, 676778, 1421828, 3016813, 6407344, 13589888, 28962702, 61853827, 132073646, 282752030, 606492428, 1301587833, 2797816706, 6023460551, 12978238202, 27995493484
Offset: 1

Views

Author

Ilya Gutkovskiy, May 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 38; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[A[x^k]^2/k, {k, 1, nmax}]] + O[x]^(nmax + 1)//Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; g[n_] := g[n] = Sum[a[k] a[n - k], {k, 1, n - 1}]; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d g[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 38}]
  • PARI
    seq(n)=my(p=x+x^2+O(x^3)); for(n=1, n\2, my(m=serprec(p,x)-1); p = x + x^2*exp(sum(k=1, m\2, subst(p + O(x^(m\k+1)), x, x^k)^2/k))); Vec(p + O(x*x^n)) \\ Andrew Howroyd, May 30 2023

A319291 Number of series-reduced locally disjoint rooted trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 2, 12, 107, 1299, 20764, 412957, 9817743
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Examples

			The a(3) = 12 series-reduced locally disjoint rooted trees:
  (1(11))
   (111)
  (1(22))
  (2(12))
   (122)
  (1(12))
  (2(11))
   (112)
  (1(23))
  (2(13))
  (3(12))
   (123)
The trees counted by A316651(4) but not by a(4):
  ((11)(12))
  ((12)(13))
  ((12)(22))
  ((12)(23))
  ((13)(23))
		

Crossrefs

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],disjointQ]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
Previous Showing 21-30 of 31 results. Next