cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A060670 Numbers k such that phi(x) = k has exactly 7 solutions.

Original entry on oeis.org

32, 132, 156, 544, 912, 924, 1012, 1044, 1140, 1452, 1464, 1472, 1476, 1572, 1664, 1764, 2076, 2100, 2232, 2424, 2580, 2624, 2652, 3096, 3248, 3336, 3444, 3660, 3996, 4488, 4776, 4840, 5060, 5316, 5412, 5696, 6504, 6516, 6540, 6612, 6660, 6780, 6996, 7116
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			32 = phi(51) = phi(64) = phi(68) = phi(80) = phi(96) = phi(102) = phi(120).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), this sequence (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {8000} ]; Do[ p = EulerPhi[ n ]; If[ p < 8001, a[ [ p ] ]++ ], {n, 1, 25000} ]; Select[ Range[ 8000 ], a[ [ # ] ] == 7 & ]
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==7 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 7 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060674 Numbers k such that phi(x) = k has exactly 11 solutions.

Original entry on oeis.org

48, 512, 540, 1000, 1836, 2136, 2176, 2320, 2340, 3216, 3648, 3936, 4284, 4352, 4356, 4784, 5088, 5640, 5936, 6216, 6576, 6816, 7120, 7224, 7280, 7752, 8100, 8184, 8496, 8520, 8760, 9040, 9296, 9660, 9680, 9900, 9996, 10332, 10860, 11640, 11680, 11844
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			48 = phi(65) = phi(104) = phi(105) = phi(112) = phi(130) = phi(140) = phi(144) = phi(156) = phi(168) = phi(180) = phi(210).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), this sequence (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {12500} ]; Do[ p = EulerPhi[ n ]; If[ p < 12501, a[ [ p ] ]++ ], {n, 1, 50000} ]; Select[ Range[ 12500 ], a[ [ # ] ] == 11 & ]
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==11 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 11 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060667 Numbers k such that phi(x) = k has exactly 4 solutions.

Original entry on oeis.org

4, 6, 18, 42, 100, 162, 184, 208, 328, 424, 460, 468, 486, 492, 616, 636, 664, 688, 700, 712, 784, 820, 900, 904, 1020, 1060, 1072, 1168, 1240, 1264, 1276, 1288, 1300, 1356, 1360, 1384, 1404, 1458, 1480, 1528, 1672, 1740, 1768, 1864, 1896, 1900, 1908, 2008
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			18 = phi(19) = phi(27) = phi(38) = phi(54).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), this sequence (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {2500} ]; Do[ p = EulerPhi[ n ]; If[ p < 2501, a[ [ p ] ]++ ], {n, 1, 5000} ]; Select[ Range[ 2500 ], a[ [ # ] ] == 4 & ]
  • PARI
    is(k) = invphiNum(k) == 4 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060669 Numbers k such that phi(x) = k has exactly 6 solutions.

Original entry on oeis.org

12, 16, 84, 88, 112, 232, 348, 408, 592, 736, 760, 780, 832, 952, 984, 1032, 1048, 1068, 1128, 1232, 1272, 1312, 1332, 1428, 1432, 1488, 1552, 1608, 1692, 1912, 2052, 2200, 2272, 2292, 2436, 2484, 2552, 2576, 2608, 2632, 2700, 2728, 2832, 2848, 3048, 3088
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			12 = phi(13) = phi(21) = phi(26) = phi(28) = phi(36) = phi(42).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), this sequence (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {4000} ]; Do[ p = EulerPhi[ n ]; If[ p < 4001, a[ [ p ] ]++ ], {n, 1, 15000} ]; Select[ Range[ 4000 ], a[ [ # ] ] == 6 & ]
    Take[Select[Tally[EulerPhi[Range[50000]]],#[[2]]==6&][[All,1]]//Sort,50] (* Harvey P. Dale, Sep 15 2016 *)
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==6 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 6 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060671 Numbers k such that phi(x) = k has exactly 8 solutions.

Original entry on oeis.org

36, 64, 176, 200, 224, 280, 324, 464, 520, 888, 920, 1184, 1368, 1400, 1520, 1696, 1720, 1904, 1960, 2040, 2096, 2120, 2256, 2392, 2600, 2656, 2712, 2752, 2864, 2944, 2960, 2968, 2976, 2988, 3104, 3276, 3300, 3408, 3616, 3640, 3792, 3800, 3816, 3824, 3880
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			36 = phi(37) = phi(57) = phi(63) = phi(74) = phi(76) = phi(108) = phi(114) = phi(126).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), this sequence (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {5000} ]; Do[ p = EulerPhi[ n ]; If[ p < 5001, a[ [ p ] ]++ ], {n, 1, 25000} ]; Select[ Range[ 5000 ], a[ [ # ] ] == 8 & ]
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==8 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 8 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060672 Numbers k such that phi(x) = k has exactly 9 solutions.

Original entry on oeis.org

40, 60, 108, 128, 252, 276, 440, 612, 696, 996, 1088, 1380, 1500, 1824, 1860, 1932, 2064, 2472, 2796, 2928, 3060, 3132, 3384, 3516, 4584, 4932, 5076, 5136, 5436, 5700, 5888, 6096, 6372, 6640, 6744, 7020, 7080, 7380, 7452, 7476, 7704, 8040, 8676, 8892
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			40 = phi(41) = phi(55) = phi(75) = phi(82) = phi(88) = phi(100) = phi(110) = phi(132) = phi(150).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), this sequence (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {10000} ]; Do[ p = EulerPhi[ n ]; If[ p < 10001, a[ [ p ] ]++ ], {n, 1, 35000} ]; Select[ Range[ 10000 ], a[ [ # ] ] == 9 & ]
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==9 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 9 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060673 Numbers k such that phi(x) = k has exactly 10 solutions.

Original entry on oeis.org

24, 80, 180, 256, 264, 828, 1188, 1640, 1968, 2024, 2368, 2544, 2720, 2772, 2904, 3036, 3136, 3144, 3328, 3392, 3420, 4192, 4392, 4464, 4600, 5000, 5312, 5504, 5508, 5688, 5728, 5796, 5800, 6208, 6228, 6732, 6888, 7000, 7232, 7740, 7956, 8388, 8576, 9088
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			24 = phi(35) = phi(39) = phi(45) = phi(52) = phi(56) = phi(70) = phi(72) = phi(78) = phi(84) = phi(90).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), this sequence (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {10000} ]; Do[ p = EulerPhi[ n ]; If[ p < 10001, a[ [ p ] ]++ ], {n, 1, 35000} ]; Select[ Range[ 10000 ], a[ [ # ] ] == 10 & ]
    Take[Select[Tally[EulerPhi[Range[50000]]],#[[2]]==10&][[;;,1]]//Union,50] (* Harvey P. Dale, Sep 15 2023 *)
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==10 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 10 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060675 Numbers k such that phi(x) = k has exactly 12 solutions.

Original entry on oeis.org

160, 168, 352, 448, 816, 928, 972, 1024, 1176, 1848, 2464, 3040, 3808, 4152, 4440, 4512, 4736, 4944, 5104, 5152, 5160, 5304, 5952, 6408, 6656, 6672, 6784, 7648, 8384, 8704, 8904, 10432, 10528, 10624, 11000, 11008, 11456, 11776, 12048, 12416, 13024, 13032
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			160 = phi(187) = phi(205) = phi(328) = phi(352) = phi(374) = phi(400) = phi(410) = phi(440) = phi(492) = phi(528) = phi(600) = phi(660).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), this sequence (12).

Programs

  • Mathematica
    a = Table[ 0, {15000} ]; Do[ p = EulerPhi[ n ]; If[ p < 15001, a[ [ p ] ]++ ], {n, 1, 60000} ]; Select[ Range[ 15000 ], a[ [ # ] ] == 12 & ]
    Union[Transpose[Select[Tally[EulerPhi[Range[100000]]],#[[2]]==12&]][[1]]] (* Harvey P. Dale, Oct 05 2015 *)
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==12 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 12 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A058812 Irregular triangle of rows of numbers in increasing order. Row 1 = {1}. Row m + 1 contains all numbers k such that phi(k) is in row m.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 12, 14, 18, 11, 13, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 30, 36, 38, 42, 54, 17, 23, 25, 29, 31, 32, 33, 34, 35, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 52, 56, 57, 58, 60, 62, 63, 66, 70, 72, 74, 76, 78, 81, 84, 86, 90, 98, 108, 114, 126
Offset: 0

Views

Author

Labos Elemer, Jan 03 2001

Keywords

Comments

Nontotient values (A007617) are also present as inverses of some previous value.
Old name was: Irregular triangle of inverse totient values of integers generated recursively. Initial value is 1. The inverse-phi sets in increasing order are as follows: {1} -> {2} -> {3, 4, 6} -> {5, 7, 8, 9, 10, 12, 14, 18} -> ... The terms of each row are arranged by magnitude. The next row starts when the increase of terms is violated. 2^n is included in the n-th row. - David A. Corneth, Mar 26 2019

Examples

			Triangle begins:
  1;
  2;
  3, 4, 6;
  5, 7, 8, 9, 10, 12, 14, 18;
  ...
Row 3 is {3, 4, 6} as for each number k in this row, phi(k) is in row 2. - _David A. Corneth_, Mar 26 2019
		

Crossrefs

A058811 gives the number of terms in each row.
Cf. also A334111.

Programs

  • Mathematica
    inversePhi[m_?OddQ] = {}; inversePhi[1] = {1, 2}; inversePhi[m_] := Module[{p, nmax, n, nn}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m*Times @@ (p/(p-1)); n = m; nn = {}; While[n <= nmax, If[EulerPhi[n] == m, AppendTo[nn, n]]; n++]; nn]; row[n_] := row[n] = inversePhi /@ row[n-1] // Flatten // Union; row[0] = {1}; row[1] = {2}; Table[row[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, Dec 06 2012 *)

Extensions

Definition revised by T. D. Noe, Nov 30 2007
New name from David A. Corneth, Mar 26 2019

A066678 Totients of the least numbers for which the totient is divisible by n.

Original entry on oeis.org

1, 2, 6, 4, 10, 6, 28, 8, 18, 10, 22, 12, 52, 28, 30, 16, 102, 18, 190, 20, 42, 22, 46, 24, 100, 52, 54, 28, 58, 30, 310, 32, 66, 102, 70, 36, 148, 190, 78, 40, 82, 42, 172, 44, 180, 46, 282, 48, 196, 100, 102, 52, 106, 54, 110, 56, 228, 58, 708, 60, 366, 310, 126, 64
Offset: 1

Views

Author

Labos Elemer, Dec 22 2001

Keywords

Comments

From Alonso del Arte, Feb 03 2017: (Start)
One of the less obvious consequences of Dirichlet's theorem on primes in arithmetic progression is that this sequence is well-defined for all positive integers.
Suppose n is a nontotient (see A007617). Obviously a(n) != n. Dirichlet's theorem assures us that, if nothing else, there are infinitely many primes of the form nk + 1 for k positive (and in this case, k > 1). Then phi(nk + 1) = nk, suggesting a(n) = nk corresponding to the smallest k.
Of course not all a(n) are 1 less than a prime, such as 8, 20, 24, 54, etc. (End)

Examples

			a(23) = 46 because there is no solution to phi(x) = 23 but there are solutions to phi(x) = 46, like x = 47.
a(24) = 24 because there are solutions to phi(x) = 24, such as x = 35.
		

Crossrefs

Programs

  • Mathematica
    EulerPhi[mulTotientList = ConstantArray[1, 70]; k = 1; While[Length[vac = Rest[Flatten[Position[mulTotientList, 1]]]] > 0, k++; mulTotientList[[Intersection[Divisors[EulerPhi[k]], vac]]] *= k]; mulTotientList] (* Vincenzo Librandi Feb 04 2017 *)
    a[n_] := For[k=1, True, k++, If[Divisible[t = EulerPhi[k], n], Return[t]]];
    Array[a, 64] (* Jean-François Alcover, Jul 30 2018 *)
  • PARI
    list(len) = {my(v = vector(len), c = 0, k = 1, e); while(c < len, e = eulerphi(k); fordiv(e, d, if(d <= len && v[d] == 0, v[d] = e; c++)); k++); v;} \\ Amiram Eldar, Mar 07 2025
  • Sage
    def A066678(n):
        s = 1
        while euler_phi(s) % n: s += 1
        return euler_phi(s)
    print([A066678(n) for n in (1..64)]) # Peter Luschny, Feb 05 2017
    

Formula

a(n) = A000010(A061026(n)).
Previous Showing 11-20 of 57 results. Next